These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10343268)

  • 21. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach.
    Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A
    Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass.
    Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A
    Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dynamic air bubble trap reduces cerebral microembolism during cardiopulmonary bypass.
    Schoenburg M; Kraus B; Muehling A; Taborski U; Hofmann H; Erhardt G; Hein S; Roth M; Vogt PR; Karliczek GF; Kloevekorn WP
    J Thorac Cardiovasc Surg; 2003 Nov; 126(5):1455-60. PubMed ID: 14666019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass.
    Milano AD; Dodonov M; Onorati F; Menon T; Gottin L; Malerba G; Mazzucco A; Faggian G
    Interact Cardiovasc Thorac Surg; 2013 Nov; 17(5):811-7. PubMed ID: 23842758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs.
    Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest.
    Langley SM; Chai PJ; Tsui SS; Jaggers JJ; Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Jun; 119(6):1262-9. PubMed ID: 10838546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH-stat cooling improves cerebral metabolic recovery after circulatory arrest in a piglet model of aortopulmonary collaterals.
    Kirshbom PM; Skaryak LR; DiBernardo LR; Kern FH; Greeley WJ; Gaynor JW; Ungerleider RM
    J Thorac Cardiovasc Surg; 1996 Jan; 111(1):147-55; discussion 156-7. PubMed ID: 8551760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat.
    Duebener LF; Hagino I; Sakamoto T; Mime LB; Stamm C; Zurakowski D; Schäfers HJ; Jonas RA
    Circulation; 2002 Sep; 106(12 Suppl 1):I103-8. PubMed ID: 12354717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets.
    Kurth CD; O'Rourke MM; O'Hara IB
    Anesthesiology; 1998 Jul; 89(1):110-8. PubMed ID: 9667301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel sialyl Lewis X analog attenuates cerebral injury after deep hypothermic circulatory arrest.
    Shin'oka T; Nagashima M; Nollert G; Shum-Tim D; Laussen PC; Lidov HG; du Plessis A; Jonas RA
    J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1204-11. PubMed ID: 10343273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiopulmonary bypass. Microembolization and platelet aggregation.
    Solis RT; Kennedy PS; Beall AC; Noon GP; DeBakey ME
    Circulation; 1975 Jul; 52(1):103-8. PubMed ID: 1132112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion.
    Hoffman GM; Stuth EA; Jaquiss RD; Vanderwal PL; Staudt SR; Troshynski TJ; Ghanayem NS; Tweddell JS
    J Thorac Cardiovasc Surg; 2004 Jan; 127(1):223-33. PubMed ID: 14752434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets.
    Schultz S; Antoni D; Shears G; Markowitz S; Pastuszko P; Greeley W; Wilson DF; Pastuszko A
    J Thorac Cardiovasc Surg; 2006 Oct; 132(4):839-44. PubMed ID: 17000295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elimination of gaseous microemboli from cardiopulmonary bypass using hypobaric oxygenation.
    Gipson KE; Rosinski DJ; Schonberger RB; Kubera C; Mathew ES; Nichols F; Dyckman W; Courtin F; Sherburne B; Bordey AF; Gross JB
    Ann Thorac Surg; 2014 Mar; 97(3):879-86. PubMed ID: 24206970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of the effects on neuronal Golgi morphology, assessed with electron microscopy, of cardiopulmonary bypass, low-flow bypass, and circulatory arrest during profound hypothermia.
    Scheller MS; Branson PJ; Cornacchia LG; Alksne JF
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1396-404. PubMed ID: 1434722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures.
    Dhami R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro elimination of gaseous microemboli utilizing hypobaric oxygenation in the Terumo® FX15 oxygenator.
    Clingan S; Schuldes M; Francis S; Hoerr H; Riley J
    Perfusion; 2016 Oct; 31(7):552-9. PubMed ID: 26993481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.