These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 10343269)
1. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. II. hypoxic versus free radical injury. Nollert G; Nagashima M; Bucerius J; Shin'oka T; Lidov HG; du Plessis A; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1172-9. PubMed ID: 10343269 [TBL] [Abstract][Full Text] [Related]
2. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli. Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268 [TBL] [Abstract][Full Text] [Related]
3. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
4. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. Shum-Tim D; Nagashima M; Shinoka T; Bucerius J; Nollert G; Lidov HG; du Plessis A; Laussen PC; Jonas RA J Thorac Cardiovasc Surg; 1998 Nov; 116(5):780-92. PubMed ID: 9806385 [TBL] [Abstract][Full Text] [Related]
6. A novel sialyl Lewis X analog attenuates cerebral injury after deep hypothermic circulatory arrest. Shin'oka T; Nagashima M; Nollert G; Shum-Tim D; Laussen PC; Lidov HG; du Plessis A; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1204-11. PubMed ID: 10343273 [TBL] [Abstract][Full Text] [Related]
7. Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester. Hiramatsu T; Jonas RA; Miura T; duPlessis A; Tanji M; Forbess JM; Holtzman D J Thorac Cardiovasc Surg; 1996 Sep; 112(3):698-707. PubMed ID: 8800158 [TBL] [Abstract][Full Text] [Related]
8. Recovery of cerebral metabolism and mitochondrial oxidation state is delayed after hypothermic circulatory arrest. Greeley WJ; Bracey VA; Ungerleider RM; Greibel JA; Kern FH; Boyd JL; Reves JG; Piantadosi CA Circulation; 1991 Nov; 84(5 Suppl):III400-6. PubMed ID: 1657453 [TBL] [Abstract][Full Text] [Related]
9. Effects of oncotic pressure and hematocrit on outcome after hypothermic circulatory arrest. Shin'oka T; Shum-Tim D; Laussen PC; Zinkovsky SM; Lidov HG; du Plessis A; Jonas RA Ann Thorac Surg; 1998 Jan; 65(1):155-64. PubMed ID: 9456110 [TBL] [Abstract][Full Text] [Related]
10. Dynamic changes in cerebral oxygenation related to deep hypothermia and circulatory arrest evaluated by near-infrared spectroscopy. Abdul-Khaliq H; Schubert S; Troitzsch D; Huebler M; Boettcher W; Baur MO; Lange PE Acta Anaesthesiol Scand; 2001 Jul; 45(6):696-701. PubMed ID: 11421827 [TBL] [Abstract][Full Text] [Related]
11. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740 [TBL] [Abstract][Full Text] [Related]
12. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets. Schultz S; Antoni D; Shears G; Markowitz S; Pastuszko P; Greeley W; Wilson DF; Pastuszko A J Thorac Cardiovasc Surg; 2006 Oct; 132(4):839-44. PubMed ID: 17000295 [TBL] [Abstract][Full Text] [Related]
13. Effect of granulocyte-colony stimulating factor on expression of selected proteins involved in regulation of apoptosis in the brain of newborn piglets after cardiopulmonary bypass and deep hypothermic circulatory arrest. Pastuszko P; Schears GJ; Pirzadeh A; Kubin J; Greeley WJ; Wilson DF; Pastuszko A J Thorac Cardiovasc Surg; 2012 Jun; 143(6):1436-42. PubMed ID: 22306220 [TBL] [Abstract][Full Text] [Related]