These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 10344)

  • 1. Production of phospholipase C (alpha-toxin), haemolysins and lethal toxins by Clostridium perfringens types A to D.
    Möllby R; Holme T; Nord CE; Smyth CJ; Wadström T
    J Gen Microbiol; 1976 Sep; 96(1):137-44. PubMed ID: 10344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens.
    Rafii F; Park M; Bryant AE; Johnson SJ; Wagner RD
    Antimicrob Agents Chemother; 2008 Mar; 52(3):895-900. PubMed ID: 18160514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of phospholipase C and theta-haemolysin in pre-reduced media in batch anc continuous culture of Clostridium perfringens type A.
    Nord CE; Möllby R; Smyth C; Wadström T
    J Gen Microbiol; 1974 Sep; 84(1):117-27. PubMed ID: 4373522
    [No Abstract]   [Full Text] [Related]  

  • 4. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene.
    Méndez MB; Goñi A; Ramirez W; Grau RR
    Microb Pathog; 2012 Jan; 52(1):85-91. PubMed ID: 22079896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lethal toxin of Bacillus cereus. I. Relationships and nature of toxin, hemolysin, and phospholipase.
    Johnson CE; Bonventre PF
    J Bacteriol; 1967 Aug; 94(2):306-16. PubMed ID: 4292311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxinotyping of Clostridium perfringens fecal isolates of reintroduced Père David's deer (Elaphurus davidianus) in China.
    Qiu H; Chen F; Leng X; Fei R; Wang L
    J Wildl Dis; 2014 Oct; 50(4):942-5. PubMed ID: 25050802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues.
    Yagi H; Nakayama-Imaohji H; Nariya H; Tada A; Yamasaki H; Ugai H; Elahi M; Ono T; Kuwahara T
    Microb Pathog; 2018 Jun; 119():200-207. PubMed ID: 29654901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enterotoxin production by lecithinase-positive and lecithinase-negative Clostridium perfringens isolated from food poisoning outbreaks and other sources.
    Skjelkvåle R; Stringer MF; Smart JL
    J Appl Bacteriol; 1979 Oct; 47(2):329-39. PubMed ID: 232099
    [No Abstract]   [Full Text] [Related]  

  • 9. Lecithinase-negative variants of Clostridium perfringens; the identity of C. plagarum with C. perfringens.
    Nakamura S; Sakurai M; Nishida S
    Can J Microbiol; 1976 Oct; 22(10):1497-501. PubMed ID: 184898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of differentiated C2C12 muscle cells enhances toxin production and growth by
    Li J; Sayeed S; McClane BA
    Virulence; 2024 Dec; 15(1):2388219. PubMed ID: 39192628
    [No Abstract]   [Full Text] [Related]  

  • 11. A serotyping system for Clostridium welchii (C. perfringens) type A, and studies on the type-specific antigens.
    Hughes JA; Turnbull PC; Stringer MF
    J Med Microbiol; 1976 Nov; 9(4):475-85. PubMed ID: 63553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens.
    Abildgaard L; Engberg RM; Pedersen K; Schramm A; Hojberg O
    Vet Microbiol; 2009 May; 136(3-4):293-9. PubMed ID: 19070974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium perfringens toxin types from freshwater fishes in one water reservoir of Shandong Province of China, determined by PCR.
    Cai Y; Gao J; Wang X; Chai T; Zhang X; Duan H; Jiang S; Zucker BA; Schlenker G
    Dtsch Tierarztl Wochenschr; 2008 Aug; 115(8):292-4, 296-7. PubMed ID: 18717056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth conditions of clostridium perfringens type B for production of toxins used to obtain veterinary vaccines.
    Viana Brandi I; Domenici Mozzer O; Jorge EV; Vieira Passos FJ; Lopes Passos FM; Cangussu AS; Macedo Sobrinho E
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1737-42. PubMed ID: 24573216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC; Heuck AP
    Biochemistry; 2010 Nov; 49(44):9498-507. PubMed ID: 20886855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of plc gene transcription and alpha-toxin production during growth of Clostridium perfringens strains with contrasting alpha-toxin production.
    Abildgaard L; Schramm A; Rudi K; Højberg O
    Vet Microbiol; 2009 Oct; 139(1-2):202-6. PubMed ID: 19559545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medium for toxin production by Clostridium perfringens in continuous culture.
    Chou G
    Appl Microbiol; 1971 May; 21(5):794-8. PubMed ID: 4324884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Identification of two plasmids isolated from a bacteriocinogenic strain of Clostridium perfringens].
    Ionesco H; Bieth G; Dauguet C; Bouanchaud D
    Ann Microbiol (Paris); 1976 Oct; 127B(3):283-94. PubMed ID: 190933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene.
    Flores-Díaz M; Alape-Girón A
    Toxicon; 2003 Dec; 42(8):979-86. PubMed ID: 15019495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of continuous sub-culturing on infectivity of Clostridium perfringens ATCC13124 in mouse gas gangrene model.
    Kumar RB; Alam SI
    Folia Microbiol (Praha); 2017 Jul; 62(4):343-353. PubMed ID: 28213749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.