These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 10346866)

  • 21. 5'-sulfhydryl-modified RNA: initiator synthesis, in vitro transcription, and enzymatic incorporation.
    Zhang L; Sun L; Cui Z; Gottlieb RL; Zhang B
    Bioconjug Chem; 2001; 12(6):939-48. PubMed ID: 11716685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection.
    Zhang X; Studier FW
    J Mol Biol; 2004 Jul; 340(4):707-30. PubMed ID: 15223315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization.
    Kore AR; Shanmugasundaram M; Charles I; Vlassov AV; Barta TJ
    J Am Chem Soc; 2009 May; 131(18):6364-5. PubMed ID: 19385620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutagenic and inhibitory effects of ribavirin on hepatitis C virus RNA polymerase.
    Vo NV; Young KC; Lai MM
    Biochemistry; 2003 Sep; 42(35):10462-71. PubMed ID: 12950173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gas-phase isolation of diethyl guanosine 5'-monophosphate and its conformational assignment.
    Asami H; Tsukamoto M; Hayakawa Y; Saigusa H
    Phys Chem Chem Phys; 2010 Nov; 12(42):13918-21. PubMed ID: 20859597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T7 RNA polymerase transcription with 5-position modified UTP derivatives.
    Vaught JD; Dewey T; Eaton BE
    J Am Chem Soc; 2004 Sep; 126(36):11231-7. PubMed ID: 15355104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Interaction of RNA polymerase of bacteriophage T7 with affinity modifier analogs of nucleoside triphosphates].
    Tunitskaia VL; Kochetkova SV; Godovikova TS; Kochetkov SN
    Mol Biol (Mosk); 2000; 34(1):60-6. PubMed ID: 10732341
    [No Abstract]   [Full Text] [Related]  

  • 28. Fluoroquinolones as potential photochemotherapeutic agents: covalent addition to guanosine monophosphate.
    Fasani E; Manet I; Capobianco ML; Monti S; Pretali L; Albini A
    Org Biomol Chem; 2010 Aug; 8(16):3621-3. PubMed ID: 20571620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using in vitro transcription to construct scaffolds for one-dimensional arrays of mercuric ions.
    Johannsen S; Paulus S; Düpre N; Müller J; Sigel RK
    J Inorg Biochem; 2008; 102(5-6):1141-51. PubMed ID: 18289686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Libraries of multifunctional RNA conjugates for the selection of new RNA catalysts.
    Hausch F; Jäschke A
    Bioconjug Chem; 1997; 8(6):885-90. PubMed ID: 9404662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The intercalating beta-hairpin of T7 RNA polymerase plays a role in promoter DNA melting and in stabilizing the melted DNA for efficient RNA synthesis.
    Stano NM; Patel SS
    J Mol Biol; 2002 Feb; 315(5):1009-25. PubMed ID: 11827472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient unnatural base pair for a base-pair-expanded transcription system.
    Mitsui T; Kimoto M; Harada Y; Yokoyama S; Hirao I
    J Am Chem Soc; 2005 Jun; 127(24):8652-8. PubMed ID: 15954770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of vascular endothelial growth factor gene expression by T7-siRNAs in cultured human retinal pigment epithelial cells.
    Li GY; Fan B; Wu YZ; Wang XR; Wang YH; Wu JX
    Chin Med J (Engl); 2005 Apr; 118(7):567-73. PubMed ID: 15820087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic modeling and simulation of in vitro transcription by phage T7 RNA polymerase.
    Arnold S; Siemann M; Scharnweber K; Werner M; Baumann S; Reuss M
    Biotechnol Bioeng; 2001 Mar; 72(5):548-61. PubMed ID: 11460245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized RNA amplification using T7-RNA-polymerase based in vitro transcription.
    Moll PR; Duschl J; Richter K
    Anal Biochem; 2004 Nov; 334(1):164-74. PubMed ID: 15464965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-steady-state kinetics of initiation of transcription by T7 RNA polymerase: a new kinetic model.
    Kuzmine I; Martin CT
    J Mol Biol; 2001 Jan; 305(3):559-66. PubMed ID: 11152612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymerase activities and RNA structures in the atomic force microscope.
    Hansma HG; Golan R; Hsieh W; Daubendiek SL; Kool ET
    J Struct Biol; 1999 Oct; 127(3):240-7. PubMed ID: 10544049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular arrangement of guanosine/5-guanosine monophosphate binary mixtures studied by methods of circular dichroism.
    Novotná J; Goncharova I; Urbanová M
    Chirality; 2012 May; 24(5):432-8. PubMed ID: 22517502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase.
    Kao C; Zheng M; Rüdisser S
    RNA; 1999 Sep; 5(9):1268-72. PubMed ID: 10496227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vitamin-guanosine monophosphate conjugates for in vitro transcription priming.
    Papastavrou N; Bande O; Marlière P; Groaz E; Herdewijn P
    Chem Commun (Camb); 2020 Mar; 56(18):2787-2790. PubMed ID: 32025667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.