BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10346919)

  • 1. Stopped-flow kinetic analysis of the ligand-induced coil-helix transition in glutathione S-transferase A1-1: evidence for a persistent denatured state.
    Nieslanik BS; Dabrowski MJ; Lyon RP; Atkins WM
    Biochemistry; 1999 May; 38(21):6971-80. PubMed ID: 10346919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminus of glutathione S-transferase A1-1 is required for entropically-driven ligand binding.
    Nieslanik BS; Ibarra C; Atkins WM
    Biochemistry; 2001 Mar; 40(12):3536-43. PubMed ID: 11297419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme.
    Lo Bello M; Oakley AJ; Battistoni A; Mazzetti AP; Nuccetelli M; Mazzarese G; Rossjohn J; Parker MW; Ricci G
    Biochemistry; 1997 May; 36(20):6207-17. PubMed ID: 9166793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione induces helical formation in the carboxy terminus of human glutathione transferase A1-1.
    Zhan Y; Rule GS
    Biochemistry; 2004 Jun; 43(23):7244-54. PubMed ID: 15182170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1-1 catalyzing SNAr reactions.
    Hansson LO; Widersten M; Mannervik B
    Biochemistry; 1997 Sep; 36(37):11252-60. PubMed ID: 9287168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I.
    Labrou NE; Kotzia GA; Clonis YD
    Protein Eng Des Sel; 2004 Oct; 17(10):741-8. PubMed ID: 15556969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of ligand binding to human glutathione transferase A1-1: Tyr-9 associated localisation of the C-terminal helix is ligand-dependent.
    Balchin D; Dirr HW; Sayed Y
    Biophys Chem; 2011 Jul; 156(2-3):153-8. PubMed ID: 21530062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1.
    Widersten M; Björnestedt R; Mannervik B
    Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase.
    Dietze EC; Wang RW; Lu AY; Atkins WM
    Biochemistry; 1996 May; 35(21):6745-53. PubMed ID: 8639625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105.
    Johansson AS; Stenberg G; Widersten M; Mannervik B
    J Mol Biol; 1998 May; 278(3):687-98. PubMed ID: 9600848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication between the two active sites of glutathione S-transferase A1-1, probed using wild-type-mutant heterodimers.
    Misquitta SA; Colman RF
    Biochemistry; 2005 Jun; 44(24):8608-19. PubMed ID: 15952767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton release upon glutathione binding to glutathione transferase P1-1: kinetic analysis of a multistep glutathione binding process.
    Caccuri AM; Lo Bello M; Nuccetelli M; Nicotra M; Rossi P; Antonini G; Federici G; Ricci G
    Biochemistry; 1998 Mar; 37(9):3028-34. PubMed ID: 9485455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy.
    Lew J; Taylor SS; Adams JA
    Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix.
    Grahn E; Novotny M; Jakobsson E; Gustafsson A; Grehn L; Olin B; Madsen D; Wahlberg M; Mannervik B; Kleywegt GJ
    Acta Crystallogr D Biol Crystallogr; 2006 Feb; 62(Pt 2):197-207. PubMed ID: 16421451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of bromosulphophthalein binding to human glutathione S-transferase A1-1: thermodynamics and inhibition kinetics.
    Kolobe D; Sayed Y; Dirr HW
    Biochem J; 2004 Sep; 382(Pt 2):703-9. PubMed ID: 15147239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and kinetic unfolding properties of dimeric human glutathione transferase A1-1.
    Wallace LA; Sluis-Cremer N; Dirr HW
    Biochemistry; 1998 Apr; 37(15):5320-8. PubMed ID: 9548764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation.
    Desamero R; Rozovsky S; Zhadin N; McDermott A; Callender R
    Biochemistry; 2003 Mar; 42(10):2941-51. PubMed ID: 12627960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal region of human glutathione transferase A1-1 affects the rate of glutathione binding and the ionization of the active-site Tyr9.
    Gustafsson A; Etahadieh M; Jemth P; Mannervik B
    Biochemistry; 1999 Dec; 38(49):16268-75. PubMed ID: 10587450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridization of alpha class subunits generating a functional glutathione transferase A1-4 heterodimer.
    Gustafsson A; Nilsson LO; Mannervik B
    J Mol Biol; 2002 Feb; 316(2):395-406. PubMed ID: 11851347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the C-terminal helix 9 in the stability and ligandin function of class alpha glutathione transferase A1-1.
    Dirr HW; Wallace LA
    Biochemistry; 1999 Nov; 38(47):15631-40. PubMed ID: 10569948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.