BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10347033)

  • 1. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway.
    Ikeda M; Katsumata R
    Appl Environ Microbiol; 1999 Jun; 65(6):2497-502. PubMed ID: 10347033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway.
    Ikeda M; Nakanishi K; Kino K; Katsumata R
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):674-8. PubMed ID: 7764859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum.
    Ikeda M; Okamoto K; Katsumata R
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):201-6. PubMed ID: 10091326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression.
    Shen T; Liu Q; Xie X; Xu Q; Chen N
    J Biomed Biotechnol; 2012; 2012():605219. PubMed ID: 22791961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum.
    Kiefer P; Heinzle E; Wittmann C
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):338-43. PubMed ID: 12032807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Takano Y; Nakano T; Ikeda M
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):710-7. PubMed ID: 11601619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Corynebacterium pekinense transketolase: gene cloning, sequence analysis and expression].
    Ji W; Zhao Z; Zhang Y; Wang Y; Ding J
    Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1474-80. PubMed ID: 21268892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of pps and aroGfbr overexpression on L-tryptophan production in Corynebacterium pekinense].
    Zang C; Zhao Z; Wang Y; Zhang Y; Ding J
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):24-32. PubMed ID: 24783851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain.
    Ikeda M; Katsumata R
    Appl Environ Microbiol; 1992 Mar; 58(3):781-5. PubMed ID: 16348670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source.
    Wittmann C; Kiefer P; Zelder O
    Appl Environ Microbiol; 2004 Dec; 70(12):7277-87. PubMed ID: 15574927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
    Krömer JO; Sorgenfrei O; Klopprogge K; Heinzle E; Wittmann C
    J Bacteriol; 2004 Mar; 186(6):1769-84. PubMed ID: 14996808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway.
    Follstad BD; Stephanopoulos G
    Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum.
    Ohnishi J; Katahira R; Mitsuhashi S; Kakita S; Ikeda M
    FEMS Microbiol Lett; 2005 Jan; 242(2):265-74. PubMed ID: 15621447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of aromatic amino acid transport gene knock-out on L-tryptophan accumulation in Corynebacterium pekinense PD-67].
    Ma W; Zhao Z; Wang Y; Zhang Y; Ding J
    Wei Sheng Wu Xue Bao; 2012 Nov; 52(11):1344-51. PubMed ID: 23383505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.