BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10347033)

  • 41. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources.
    Becker J; Klopprogge C; Zelder O; Heinzle E; Wittmann C
    Appl Environ Microbiol; 2005 Dec; 71(12):8587-96. PubMed ID: 16332851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of 4-Hydroxybenzoic Acid by an Aerobic Growth-Arrested Bioprocess Using Metabolically Engineered Corynebacterium glutamicum.
    Kitade Y; Hashimoto R; Suda M; Hiraga K; Inui M
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305513
    [No Abstract]   [Full Text] [Related]  

  • 44. Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding.
    Ohnishi J; Hayashi M; Mitsuhashi S; Ikeda M
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):69-75. PubMed ID: 12835923
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acquisition of a sucrose utilization system in Escherichia coli K-12 derivatives and its application to industry.
    Tsunekawa H; Azuma S; Okabe M; Okamoto R; Aiba S
    Appl Environ Microbiol; 1992 Jun; 58(6):2081-8. PubMed ID: 1622287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant.
    Hasegawa S; Tanaka Y; Suda M; Jojima T; Inui M
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27881414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress.
    Varela C; Agosin E; Baez M; Klapa M; Stephanopoulos G
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):547-55. PubMed ID: 12536254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Limiting metabolic steps in the utilization of D-xylose by recombinant Ralstonia eutropha W50-EAB].
    Wang L; Liu G; Zhang Y; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):164-75. PubMed ID: 25958696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum.
    Wang Z; Chen T; Ma X; Shen Z; Zhao X
    Bioresour Technol; 2011 Feb; 102(4):3934-40. PubMed ID: 21194928
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.
    Li YH; Ou-Yang FY; Yang CH; Li SY
    Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fed-batch production of a bioflocculant from Corynebacterium glutamicum.
    Wu H; Li Q; Lu R; Wang Y; Zhuang X; He N
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1203-9. PubMed ID: 20589412
    [TBL] [Abstract][Full Text] [Related]  

  • 53. L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway.
    Liu L; Duan X; Wu J
    PLoS One; 2016; 11(6):e0158200. PubMed ID: 27348810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biotransformation of β-hydroxypyruvate and glycolaldehyde to l-erythrulose by Pichia pastoris strain GS115 overexpressing native transketolase.
    Wei YC; Braun-Galleani S; Henríquez MJ; Bandara S; Nesbeth D
    Biotechnol Prog; 2018 Jan; 34(1):99-106. PubMed ID: 29086489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain.
    Chassagnole C; Létisse F; Diano A; Lindley ND
    Mol Biol Rep; 2002; 29(1-2):129-34. PubMed ID: 12241042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production.
    Lai S; Zhang Y; Liu S; Liang Y; Shang X; Chai X; Wen T
    Sci China Life Sci; 2012 Apr; 55(4):283-90. PubMed ID: 22566084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase.
    Marx A; Eikmanns BJ; Sahm H; de Graaf AA; Eggeling L
    Metab Eng; 1999 Jan; 1(1):35-48. PubMed ID: 10935753
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Ikeda M; Nagashima T; Nakamura E; Kato R; Ohshita M; Hayashi M; Takeno S
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biotechnological manufacture of lysine.
    Pfefferle W; Möckel B; Bathe B; Marx A
    Adv Biochem Eng Biotechnol; 2003; 79():59-112. PubMed ID: 12523389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli.
    Ikeda M; Ozaki A; Katsumata R
    Appl Microbiol Biotechnol; 1993 Jun; 39(3):318-23. PubMed ID: 7763713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.