BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10347033)

  • 61. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum.
    Eikmanns BJ; Eggeling L; Sahm H
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):145-63. PubMed ID: 8092856
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Effects of gene pta disruption on L-tryptophan fermentation].
    Huang J; Shi J; Liu Q; Xu Q; Xie X; Wen T; Chen N
    Wei Sheng Wu Xue Bao; 2011 Apr; 51(4):480-7. PubMed ID: 21796982
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.
    Liu L; Chen S; Wu J
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.
    Ohnishi J; Mitsuhashi S; Hayashi M; Ando S; Yokoi H; Ochiai K; Ikeda M
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):217-23. PubMed ID: 11876415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine.
    Tsuge Y; Kawaguchi H; Yamamoto S; Nishigami Y; Sota M; Ogino C; Kondo A
    Biosci Biotechnol Biochem; 2018 Jul; 82(7):1252-1259. PubMed ID: 29558858
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control.
    Hashiro S; Mitsuhashi M; Yasueda H
    J Biosci Bioeng; 2019 May; 127(5):529-538. PubMed ID: 30420330
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number.
    Nesvera J; Pátek M; Hochmannová J; Abrhámová Z; Becvárová V; Jelínkova M; Vohradský J
    J Bacteriol; 1997 Mar; 179(5):1525-32. PubMed ID: 9045809
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production.
    Xu JZ; Yu HB; Han M; Liu LM; Zhang WG
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):937-949. PubMed ID: 30937555
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biosynthesis of Chondroitin in Engineered
    Cheng F; Luozhong S; Yu H; Guo Z
    J Microbiol Biotechnol; 2019 Mar; 29(3):392-400. PubMed ID: 30691254
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bromination of L-tryptophan in a Fermentative Process With
    Veldmann KH; Dachwitz S; Risse JM; Lee JH; Sewald N; Wendisch VF
    Front Bioeng Biotechnol; 2019; 7():219. PubMed ID: 31620432
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Glucose-6-phosphate dehydrogenase and its deficiency in mutants of Corynebacterium glutamicum.
    Ihnen ED; Demain AL
    J Bacteriol; 1969 Jun; 98(3):1151-8. PubMed ID: 5788701
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolic flexibility of D-ribose producer strain of Bacillus pumilus under environmental perturbations.
    Srivastava RK; Maiti SK; Das D; Bapat PM; Batta K; Bhushan M; Wangikar PP
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1227-43. PubMed ID: 22438109
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Overexpression of a predicted transketolase gene and disruption of an α-1,3-glucan synthase gene in Aspergillus oryzae DGLA3 strain enhances the yield of free dihomo-γ-linolenic acid.
    Tamano K; Nakai S; Takayama H; Imai Y
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):448-457. PubMed ID: 36617231
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identifying the Growth Modulon of
    Haas T; Graf M; Nieß A; Busche T; Kalinowski J; Blombach B; Takors R
    Front Microbiol; 2019; 10():974. PubMed ID: 31134020
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum.
    Xu M; Rao Z; Yang J; Dou W; Xu Z
    Curr Microbiol; 2013 Sep; 67(3):271-8. PubMed ID: 23559017
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Endogenous 2μ Plasmid Editing for Pathway Engineering in
    Zeng BX; Yao MD; Xiao WH; Luo YZ; Wang Y; Yuan YJ
    Front Microbiol; 2021; 12():631462. PubMed ID: 33664720
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimizing initial plasmid copy number distribution for improved protein activity in a recombinant fermentation.
    Patnaik PR
    Biochem Eng J; 2000 Jun; 5(2):101-107. PubMed ID: 10817814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.