BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10347033)

  • 81. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives.
    Xiao S; Wang Z; Wang B; Hou B; Cheng J; Bai T; Zhang Y; Wang W; Yan L; Zhang J
    Front Microbiol; 2023; 14():1099098. PubMed ID: 37032885
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway.
    Ikeda M; Nakanishi K; Kino K; Katsumata R
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):674-8. PubMed ID: 7764859
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering.
    Ikeda M
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):615-26. PubMed ID: 16374633
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from
    Lee CH; Kim S; Seo H; Kim KJ
    J Microbiol Biotechnol; 2023 Dec; 33(12):1595-1605. PubMed ID: 38151830
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A comprehensive review and comparison of L-tryptophan biosynthesis in
    Ren X; Wei Y; Zhao H; Shao J; Zeng F; Wang Z; Li L
    Front Bioeng Biotechnol; 2023; 11():1261832. PubMed ID: 38116200
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum.
    Mutz M; Kösters D; Wynands B; Wierckx N; Marienhagen J
    Microb Cell Fact; 2023 Oct; 22(1):209. PubMed ID: 37833813
    [TBL] [Abstract][Full Text] [Related]  

  • 87. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum.
    Mindt M; Ferrer L; Bosch D; Cankar K; Wendisch VF
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1621-1634. PubMed ID: 36786915
    [TBL] [Abstract][Full Text] [Related]  

  • 88. l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by
    Ferrer L; Elsaraf M; Mindt M; Wendisch VF
    Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625472
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fermentative Indole Production via Bacterial Tryptophan Synthase Alpha Subunit and Plant Indole-3-Glycerol Phosphate Lyase Enzymes.
    Ferrer L; Mindt M; Suarez-Diez M; Jilg T; Zagorščak M; Lee JH; Gruden K; Wendisch VF; Cankar K
    J Agric Food Chem; 2022 May; 70(18):5634-5645. PubMed ID: 35500281
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications.
    Mindt M; Beyraghdar Kashkooli A; Suarez-Diez M; Ferrer L; Jilg T; Bosch D; Martins Dos Santos V; Wendisch VF; Cankar K
    Microb Cell Fact; 2022 Mar; 21(1):45. PubMed ID: 35331232
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Biosensor-Assisted Adaptive Laboratory Evolution for Violacein Production.
    Gwon DA; Seok JY; Jung GY; Lee JW
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34205463
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sustainable Production of
    Kerbs A; Mindt M; Schwardmann L; Wendisch VF
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33924554
    [No Abstract]   [Full Text] [Related]  

  • 93. Engineering
    Li Z; Ding D; Wang H; Liu L; Fang H; Chen T; Zhang D
    Synth Syst Biotechnol; 2020 Sep; 5(3):200-205. PubMed ID: 32671235
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production.
    Selle PH; de Paula Dorigam JC; Lemme A; Chrystal PV; Liu SY
    Animals (Basel); 2020 Apr; 10(4):. PubMed ID: 32331461
    [No Abstract]   [Full Text] [Related]  

  • 95. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with
    Schwentner A; Feith A; Münch E; Stiefelmaier J; Lauer I; Favilli L; Massner C; Öhrlein J; Grund B; Hüser A; Takors R; Blombach B
    Biotechnol Biofuels; 2019; 12():65. PubMed ID: 30962820
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli.
    Du L; Zhang Z; Xu Q; Chen N
    Bioengineered; 2019 Dec; 10(1):59-70. PubMed ID: 30866700
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Recombinant Protein Expression System in
    Lee MJ; Kim P
    Front Microbiol; 2018; 9():2523. PubMed ID: 30416490
    [No Abstract]   [Full Text] [Related]  

  • 99. Effective separation of aromatic and aliphatic amino acids mixtures using ionic-liquid-based aqueous biphasic systems.
    Capela EV; Quental MV; Coutinho JAP; Freire MG
    Green Chem; 2017 Apr; 19(8):1850-1854. PubMed ID: 30271273
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.
    Liu L; Chen S; Wu J
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.