BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10347043)

  • 21. Biochemical and molecular analyses of gibberellin biosynthesis in fungi.
    Kawaide H
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):583-90. PubMed ID: 16556972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterization of two cytochrome P450 monooxygenase genes, P450-1 and P450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D).
    Malonek S; Rojas MC; Hedden P; Gaskin P; Hopkins P; Tudzynski B
    Appl Environ Microbiol; 2005 Mar; 71(3):1462-72. PubMed ID: 15746349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation of the filamentous fungus Gibberella fujikuroi using the Aspergillus niger niaD gene encoding nitrate reductase.
    Sànchez-Fernàndez R; Unkles SE; Campbell EI; Macro JA; Cerdà-Olmedo E; Kinghorn JR
    Mol Gen Genet; 1991 Feb; 225(2):231-3. PubMed ID: 2005864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Restriction enzyme-mediated integration (REMI) mutagenesis.
    Kuspa A
    Methods Mol Biol; 2006; 346():201-9. PubMed ID: 16957292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation and mutagenesis of the nematode-trapping fungus Monacrosporium sphaeroides by restriction enzyme-mediated integration (REMI).
    Jin X; Mo MH; Wei Z; Huang XW; Zhang KQ
    J Microbiol; 2005 Oct; 43(5):417-23. PubMed ID: 16273033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium.
    Lale G; Gadre R
    J Ind Microbiol Biotechnol; 2010 Mar; 37(3):297-306. PubMed ID: 19967447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI).
    Sánchez O; Navarro RE; Aguirre J
    Mol Gen Genet; 1998 Apr; 258(1-2):89-94. PubMed ID: 9613576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola.
    Thon MR; Nuckles EM; Vaillancourt LJ
    Mol Plant Microbe Interact; 2000 Dec; 13(12):1356-65. PubMed ID: 11106028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression.
    Mende K; Homann V; Tudzynski B
    Mol Gen Genet; 1997 Jun; 255(1):96-105. PubMed ID: 9230902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins.
    Fleet CM; Yamaguchi S; Hanada A; Kawaide H; David CJ; Kamiya Y; Sun TP
    Plant Physiol; 2003 Jun; 132(2):830-9. PubMed ID: 12805613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi.
    Tudzynski B; Homann V; Feng B; Marzluf GA
    Mol Gen Genet; 1999 Feb; 261(1):106-14. PubMed ID: 10071216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Restriction enzyme-mediated insertional mutagenesis: an efficient method of Rosellinia necatrix transformation.
    Attri C; Swati ; Kulshrestha S
    Arch Microbiol; 2018 Jan; 200(1):189-194. PubMed ID: 29196779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restriction enzyme-mediated DNA integration in Coprinus cinereus.
    Granado JD; Kertesz-Chaloupková K; Aebi M; Kües U
    Mol Gen Genet; 1997 Sep; 256(1):28-36. PubMed ID: 9341676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening and identification of insertion mutants from Bipolaris eleusines by mutagenesis based on restriction enzyme-mediated integration.
    Jianping Z; Guifang D; Kai Z; Yongjun Z; Yongliang L; Liuqing Y
    FEMS Microbiol Lett; 2012 May; 330(2):90-7. PubMed ID: 22432435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial transformation of ent-kaurenoic acid and its 15-hydroxy derivatives by the SG138 mutant of Gibberella fujikuroi.
    Barrero AF; Oltra JE; Cerdá-Olmedo E; Avalos J; Justicia J
    J Nat Prod; 2001 Feb; 64(2):222-5. PubMed ID: 11430006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis.
    Helliwell CA; Poole A; Peacock WJ; Dennis ES
    Plant Physiol; 1999 Feb; 119(2):507-10. PubMed ID: 9952446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of gibberellins in Gibberella fujikuroi. Gibberellin A47.
    McInnes AG; Smith DG; Durley RC; Pharis RP; Arsenault GP; MacMillan J; Gaskin P; Vining LC
    Can J Biochem; 1977 Jul; 55(7):728-35. PubMed ID: 560901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism.
    Teichert S; Schönig B; Richter S; Tudzynski B
    Mol Microbiol; 2004 Sep; 53(6):1661-75. PubMed ID: 15341646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase.
    Toyomasu T; Kawaide H; Ishizaki A; Shinoda S; Otsuka M; Mitsuhashi W; Sassa T
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):660-4. PubMed ID: 10803977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separate compartments for the production of sterols, carotenoids and gibberellins in Gibberella fujikuroi.
    Domenech CE; Giordano W; Avalos J; Cerdá-Olmedo E
    Eur J Biochem; 1996 Aug; 239(3):720-5. PubMed ID: 8774718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.