BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10347143)

  • 1. Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function.
    Johnson RE; Prakash S; Prakash L
    J Biol Chem; 1999 Jun; 274(23):15975-7. PubMed ID: 10347143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability.
    Roush AA; Suarez M; Friedberg EC; Radman M; Siede W
    Mol Gen Genet; 1998 Apr; 257(6):686-92. PubMed ID: 9604893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism.
    McDonald JP; Levine AS; Woodgate R
    Genetics; 1997 Dec; 147(4):1557-68. PubMed ID: 9409821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidic residues critical for the activity and biological function of yeast DNA polymerase eta.
    Kondratick CM; Washington MT; Prakash S; Prakash L
    Mol Cell Biol; 2001 Mar; 21(6):2018-25. PubMed ID: 11238937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase iota and related rad30-like enzymes.
    McDonald JP; Tissier A; Frank EG; Iwai S; Hanaoka F; Woodgate R
    Philos Trans R Soc Lond B Biol Sci; 2001 Jan; 356(1405):53-60. PubMed ID: 11205331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB.
    Ogi T; Kato T; Kato T; Ohmori H
    Genes Cells; 1999 Nov; 4(11):607-18. PubMed ID: 10620008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase eta.
    McDonald JP; Rapić-Otrin V; Epstein JA; Broughton BC; Wang X; Lehmann AR; Wolgemuth DJ; Woodgate R
    Genomics; 1999 Aug; 60(1):20-30. PubMed ID: 10458907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of DNA polymerase eta in the bypass of abasic sites in yeast cells.
    Zhao B; Xie Z; Shen H; Wang Z
    Nucleic Acids Res; 2004; 32(13):3984-94. PubMed ID: 15284331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily.
    Gerlach VL; Aravind L; Gotway G; Schultz RA; Koonin EV; Friedberg EC
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):11922-7. PubMed ID: 10518552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta.
    Johnson RE; Prakash S; Prakash L
    Science; 1999 Feb; 283(5404):1001-4. PubMed ID: 9974380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta.
    Masutani C; Kusumoto R; Yamada A; Dohmae N; Yokoi M; Yuasa M; Araki M; Iwai S; Takio K; Hanaoka F
    Nature; 1999 Jun; 399(6737):700-4. PubMed ID: 10385124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA polymerase zeta is essential for hexavalent chromium-induced mutagenesis.
    O'Brien TJ; Witcher P; Brooks B; Patierno SR
    Mutat Res; 2009 Apr; 663(1-2):77-83. PubMed ID: 19428373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
    Wiltrout ME; Walker GC
    Genetics; 2011 Jan; 187(1):21-35. PubMed ID: 20980236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translesion synthesis by the UmuC family of DNA polymerases.
    Wang Z
    Mutat Res; 2001 Jul; 486(2):59-70. PubMed ID: 11425512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2.
    Anderson HJ; Vonarx EJ; Pastushok L; Nakagawa M; Katafuchi A; Gruz P; Di Rubbo A; Grice DM; Osmond MJ; Sakamoto AN; Nohmi T; Xiao W; Kunz BA
    Plant J; 2008 Sep; 55(6):895-908. PubMed ID: 18494853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta.
    Washington MT; Johnson RE; Prakash S; Prakash L
    J Biol Chem; 1999 Dec; 274(52):36835-8. PubMed ID: 10601233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass.
    Boudsocq F; Ling H; Yang W; Woodgate R
    DNA Repair (Amst); 2002 May; 1(5):343-58. PubMed ID: 12509239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenicity of N3-methyladenine: a multi-translesion polymerase affair.
    Monti P; Traverso I; Casolari L; Menichini P; Inga A; Ottaggio L; Russo D; Iyer P; Gold B; Fronza G
    Mutat Res; 2010 Jan; 683(1-2):50-6. PubMed ID: 19874831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C.
    Grúz P; Pisani FM; Shimizu M; Yamada M; Hayashi I; Morikawa K; Nohmi T
    J Biol Chem; 2001 Dec; 276(50):47394-401. PubMed ID: 11581267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poleta, Polzeta and Rev1 together are required for G to T transversion mutations induced by the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells.
    Zhao B; Wang J; Geacintov NE; Wang Z
    Nucleic Acids Res; 2006; 34(2):417-25. PubMed ID: 16415180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.