These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10347146)

  • 1. Functional interaction between the N- and C-terminal halves of human hexokinase II.
    Ardehali H; Printz RL; Whitesell RR; May JM; Granner DK
    J Biol Chem; 1999 Jun; 274(23):15986-9. PubMed ID: 10347146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme.
    Arora KK; Filburn CR; Pedersen PL
    J Biol Chem; 1993 Aug; 268(24):18259-66. PubMed ID: 8349702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves.
    Ardehali H; Yano Y; Printz RL; Koch S; Whitesell RR; May JM; Granner DK
    J Biol Chem; 1996 Jan; 271(4):1849-52. PubMed ID: 8567628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization of mammalian hexokinases: characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1997 Feb; 338(2):183-92. PubMed ID: 9028870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual mechanisms for glucose 6-phosphate inhibition of human brain hexokinase.
    Liu X; Kim CS; Kurbanov FT; Honzatko RB; Fromm HJ
    J Biol Chem; 1999 Oct; 274(44):31155-9. PubMed ID: 10531306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes.
    Tsai HJ
    Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of enzyme function of the type II hexokinase C-terminal half on replacements of restricted regions by corresponding regions of glucokinase.
    Kogure K; Yamamoto K; Majima E; Shinohara Y; Yamashita K; Terada H
    J Biol Chem; 1996 Jun; 271(25):15230-6. PubMed ID: 8662949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation.
    Nawaz MH; Ferreira JC; Nedyalkova L; Zhu H; Carrasco-López C; Kirmizialtin S; Rabeh WM
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29298880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose 6-phosphate release of wild-type and mutant human brain hexokinases from mitochondria.
    Skaff DA; Kim CS; Tsai HJ; Honzatko RB; Fromm HJ
    J Biol Chem; 2005 Nov; 280(46):38403-9. PubMed ID: 16166083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose.
    John S; Weiss JN; Ribalet B
    PLoS One; 2011 Mar; 6(3):e17674. PubMed ID: 21408025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional organization of mammalian hexokinases: characterization of chimeric hexokinases constructed from the N- and C-terminal domains of the rat type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1995 Jan; 316(1):206-14. PubMed ID: 7840618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half.
    White TK; Wilson JE
    Arch Biochem Biophys; 1989 Nov; 274(2):375-93. PubMed ID: 2802617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme.
    Sebastian S; Wilson JE; Mulichak A; Garavito RM
    Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a phosphate regulatory site and a low affinity binding site for glucose 6-phosphate in the N-terminal half of human brain hexokinase.
    Fang TY; Alechina O; Aleshin AE; Fromm HJ; Honzatko RB
    J Biol Chem; 1998 Jul; 273(31):19548-53. PubMed ID: 9677378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates.
    Magnani M; Bianchi M; Casabianca A; Stocchi V; Daniele A; Altruda F; Ferrone M; Silengo L
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):193-9. PubMed ID: 1637300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation and cytoprotective role of hexokinase III.
    Wyatt E; Wu R; Rabeh W; Park HW; Ghanefar M; Ardehali H
    PLoS One; 2010 Nov; 5(11):e13823. PubMed ID: 21072205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity.
    Zaid H; Talior-Volodarsky I; Antonescu C; Liu Z; Klip A
    Biochem J; 2009 Apr; 419(2):475-84. PubMed ID: 19140804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.