These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10347238)

  • 1. Effect of mutations within the peripheral anionic site on the stability of acetylcholinesterase.
    Morel N; Bon S; Greenblatt HM; Van Belle D; Wodak SJ; Sussman JL; Massoulié J; Silman I
    Mol Pharmacol; 1999 Jun; 55(6):982-92. PubMed ID: 10347238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of Torpedo californica acetylcholinesterase by reversible inhibitors.
    Weiner L; Shnyrov VL; Konstantinovskii L; Roth E; Ashani Y; Silman I
    Biochemistry; 2009 Jan; 48(3):563-74. PubMed ID: 19115961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target.
    Harel M; Kleywegt GJ; Ravelli RB; Silman I; Sussman JL
    Structure; 1995 Dec; 3(12):1355-66. PubMed ID: 8747462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.
    Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL
    J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis.
    Harel M; Sussman JL; Krejci E; Bon S; Chanal P; Massoulié J; Silman I
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10827-31. PubMed ID: 1438284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica.
    Koellner G; Kryger G; Millard CB; Silman I; Sussman JL; Steiner T
    J Mol Biol; 2000 Feb; 296(2):713-35. PubMed ID: 10669619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The specific interaction of the photosensitizer methylene blue with acetylcholinesterase provides a model system for studying the molecular consequences of photodynamic therapy.
    Silman I; Roth E; Paz A; Triquigneaux MM; Ehrenshaft M; Xu Y; Shnyrov VL; Sussman JL; Deterding LJ; Ashani Y; Mason RP; Weiner L
    Chem Biol Interact; 2013 Mar; 203(1):63-6. PubMed ID: 23159732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D; De Maria L; Iurcu G; Wodak SJ
    J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetylcholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site.
    Harel M; Sonoda LK; Silman I; Sussman JL; Rosenberry TL
    J Am Chem Soc; 2008 Jun; 130(25):7856-61. PubMed ID: 18512913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase.
    Harel M; Schalk I; Ehret-Sabatier L; Bouet F; Goeldner M; Hirth C; Axelsen PH; Silman I; Sussman JL
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9031-5. PubMed ID: 8415649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue.
    Triquigneaux MM; Ehrenshaft M; Roth E; Silman I; Ashani Y; Mason RP; Weiner L; Deterding LJ
    Biochem J; 2012 Nov; 448(1):83-91. PubMed ID: 22888904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica.
    Kryger G; Silman I; Sussman JL
    J Physiol Paris; 1998; 92(3-4):191-4. PubMed ID: 9789806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase.
    Haviv H; Wong DM; Greenblatt HM; Carlier PR; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2005 Aug; 127(31):11029-36. PubMed ID: 16076210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin.
    Radić Z; Kirchhoff PD; Quinn DM; McCammon JA; Taylor P
    J Biol Chem; 1997 Sep; 272(37):23265-77. PubMed ID: 9287336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase: role of the enzyme's charge distribution in steering charged ligands toward the active site.
    Antosiewicz J; Wlodek ST; McCammon JA
    Biopolymers; 1996 Jul; 39(1):85-94. PubMed ID: 8924629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics.
    Xu Y; Colletier JP; Weik M; Jiang H; Moult J; Silman I; Sussman JL
    Biophys J; 2008 Sep; 95(5):2500-11. PubMed ID: 18502801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues important for folding and dimerisation of recombinant Torpedo californica acetylcholinesterase.
    Bucht G; Häggström B; Radić Z; Osterman A; Hjalmarsson K
    Biochim Biophys Acta; 1994 Dec; 1209(2):265-73. PubMed ID: 7811701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asp7O in the peripheral anionic site of human butyrylcholinesterase.
    Masson P; Froment MT; Bartels CF; Lockridge O
    Eur J Biochem; 1996 Jan; 235(1-2):36-48. PubMed ID: 8631355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of active-site-related residues in Torpedo acetylcholinesterase. Presence of a glutamic acid in the catalytic triad.
    Duval N; Bon S; Silman I; Sussman J; Massoulié J
    FEBS Lett; 1992 Sep; 309(3):421-3. PubMed ID: 1355448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.