These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10347744)

  • 1. How do calcium channels transport calcium ions?
    Ugarte G; Pérez F; Latorre R
    Biol Res; 1998; 31(1):17-32. PubMed ID: 10347744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels.
    Yang J; Ellinor PT; Sather WA; Zhang JF; Tsien RW
    Nature; 1993 Nov; 366(6451):158-61. PubMed ID: 8232554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.
    Huang Y; Li H; Bu Y
    J Comput Chem; 2009 Oct; 30(13):2136-45. PubMed ID: 19242958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docking of verapamil in a synthetic Ca2+ channel: formation of a ternary complex involving Ca2+ ions.
    Zhorov BS; Ananthanarayanan VS
    Arch Biochem Biophys; 1997 May; 341(2):238-44. PubMed ID: 9169010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel.
    Parent L; Gopalakrishnan M
    Biophys J; 1995 Nov; 69(5):1801-13. PubMed ID: 8580323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A calcium channel in the rat liver inner mitochondrial membrane. Effective diameter and selectivity under various conditions].
    Gaĭnutdinov MKh; Konov VV; Ishmukhamedov RN; Kim EP; Safarov AK
    Biokhimiia; 1994 Feb; 59(2):231-8. PubMed ID: 8155783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating.
    Paukert M; Babini E; Pusch M; Gründer S
    J Gen Physiol; 2004 Oct; 124(4):383-94. PubMed ID: 15452199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore.
    Giangiacomo KM; Becker J; Garsky C; Schmalhofer W; Garcia ML; Mullmann TJ
    Cell Biochem Biophys; 2008; 52(1):47-58. PubMed ID: 18815746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural models of Na+, Ca2+, and K+ channels.
    Guy HR; Durell SR
    Soc Gen Physiol Ser; 1995; 50():1-16. PubMed ID: 7676315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric interactions required for high-affinity binding of dihydropyridine antagonists to Ca(V)1.1 Channels are modulated by calcium in the pore.
    Peterson BZ; Catterall WA
    Mol Pharmacol; 2006 Aug; 70(2):667-75. PubMed ID: 16675661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of voltage-gated Ca2+ channels by calmodulin.
    Halling DB; Aracena-Parks P; Hamilton SL
    Sci STKE; 2005 Dec; 2005(315):re15. PubMed ID: 16369047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of divalent cation-binding site in the pore of a small conductance Ca(2+)-activated K(+) channel and its role in determining current-voltage relationship.
    Soh H; Park CS
    Biophys J; 2002 Nov; 83(5):2528-38. PubMed ID: 12414687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel.
    Gillespie D; Xu L; Wang Y; Meissner G
    J Phys Chem B; 2005 Aug; 109(32):15598-610. PubMed ID: 16852978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation.
    Macleod GT; Chen L; Karunanithi S; Peloquin JB; Atwood HL; McRory JE; Zamponi GW; Charlton MP
    Eur J Neurosci; 2006 Jun; 23(12):3230-44. PubMed ID: 16820014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial calcium uniporter is a highly selective ion channel.
    Kirichok Y; Krapivinsky G; Clapham DE
    Nature; 2004 Jan; 427(6972):360-4. PubMed ID: 14737170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applied field nonequilibrium molecular dynamics simulations of ion exit from a beta-barrel model of the L-type calcium channel.
    Ramakrishnan V; Henderson D; Busath DD
    Biochim Biophys Acta; 2004 Jul; 1664(1):1-8. PubMed ID: 15238253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ selectivity of the sarcoplasmic reticulum Ca2+-ATPase at the enzyme-water interface and in the Ca2+ entrance channel.
    Xiang F; Cukier RI; Bu Y
    J Phys Chem B; 2007 Oct; 111(42):12282-93. PubMed ID: 17914795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular elements of ion permeation and selectivity within calcium channels.
    Varadi G; Strobeck M; Koch S; Caglioti L; Zucchi C; Palyi G
    Crit Rev Biochem Mol Biol; 1999; 34(3):181-214. PubMed ID: 10473347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charged amino acids near the pore entrance influence ion-conduction of a human L-type cardiac calcium channel.
    Bahinski A; Yatani A; Mikala G; Tang S; Yamamoto S; Schwartz A
    Mol Cell Biochem; 1997 Jan; 166(1-2):125-34. PubMed ID: 9046029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.