These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The emerging molecular structure of the nitrogen cycle: an introduction to the proceedings of the 10th annual N-cycle meeting. Butler CS; Richardson DJ Biochem Soc Trans; 2005 Feb; 33(Pt 1):113-8. PubMed ID: 15667280 [TBL] [Abstract][Full Text] [Related]
3. [Response of N transformation related soil enzyme activities to inhibitor applications]. Chen L; Wu Z; Jiang Y; Zhou L Ying Yong Sheng Tai Xue Bao; 2002 Sep; 13(9):1099-103. PubMed ID: 12561170 [TBL] [Abstract][Full Text] [Related]
4. Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria. Stouthamer AH; de Boer AP; van der Oost J; van Spanning RJ Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):33-41. PubMed ID: 9049016 [TBL] [Abstract][Full Text] [Related]
6. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. Mohan SB; Schmid M; Jetten M; Cole J FEMS Microbiol Ecol; 2004 Sep; 49(3):433-43. PubMed ID: 19712292 [TBL] [Abstract][Full Text] [Related]
7. Effects of quinoid redox mediators on the activity of anammox biomass. Qiao S; Tian T; Zhou J Bioresour Technol; 2014; 152():116-23. PubMed ID: 24280086 [TBL] [Abstract][Full Text] [Related]
8. Nitric Oxide Production from Nitrite Reduction and Hydroxylamine Oxidation by Copper-containing Dissimilatory Nitrite Reductase (NirK) from the Aerobic Ammonia-oxidizing Archaeon, Nitrososphaera viennensis. Kobayashi S; Hira D; Yoshida K; Toyofuku M; Shida Y; Ogasawara W; Yamaguchi T; Araki N; Oshiki M Microbes Environ; 2018 Dec; 33(4):428-434. PubMed ID: 30318500 [TBL] [Abstract][Full Text] [Related]
10. The new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase. Gladwin MT; Grubina R; Doyle MP Acc Chem Res; 2009 Jan; 42(1):157-67. PubMed ID: 18783254 [TBL] [Abstract][Full Text] [Related]
11. Metalloenzymes of the denitrification pathway. Tavares P; Pereira AS; Moura JJ; Moura I J Inorg Biochem; 2006 Dec; 100(12):2087-100. PubMed ID: 17070915 [TBL] [Abstract][Full Text] [Related]
12. Denitrification: microbiology and ecology. Knowles R Life Support Biosph Sci; 1996; 3(1-2):31-4. PubMed ID: 11539157 [TBL] [Abstract][Full Text] [Related]
13. Enzyme diversity and mosaic gene organization in denitrification. Zumft WG; Körner H Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):43-58. PubMed ID: 9049017 [TBL] [Abstract][Full Text] [Related]
14. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. Campbell MA; Nyerges G; Kozlowski JA; Poret-Peterson AT; Stein LY; Klotz MG FEMS Microbiol Lett; 2011 Sep; 322(1):82-9. PubMed ID: 21682764 [TBL] [Abstract][Full Text] [Related]
15. Nitrate assimilation by bacteria. Lin JT; Stewart V Adv Microb Physiol; 1998; 39():1-30, 379. PubMed ID: 9328645 [TBL] [Abstract][Full Text] [Related]
16. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Kartal B; Kuypers MM; Lavik G; Schalk J; Op den Camp HJ; Jetten MS; Strous M Environ Microbiol; 2007 Mar; 9(3):635-42. PubMed ID: 17298364 [TBL] [Abstract][Full Text] [Related]
17. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Caranto JD; Lancaster KM Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8217-8222. PubMed ID: 28716929 [TBL] [Abstract][Full Text] [Related]
18. Enzymology and ecology of the nitrogen cycle. Martínez-Espinosa RM; Cole JA; Richardson DJ; Watmough NJ Biochem Soc Trans; 2011 Jan; 39(1):175-8. PubMed ID: 21265768 [TBL] [Abstract][Full Text] [Related]