These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 10348869)
1. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
2. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. McCarty JS; Rüdiger S; Schönfeld HJ; Schneider-Mergener J; Nakahigashi K; Yura T; Bukau B J Mol Biol; 1996 Mar; 256(5):829-37. PubMed ID: 8601834 [TBL] [Abstract][Full Text] [Related]
3. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
4. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related]
5. The C terminus of sigma(32) is not essential for degradation by FtsH. Tomoyasu T; Arsène F; Ogura T; Bukau B J Bacteriol; 2001 Oct; 183(20):5911-7. PubMed ID: 11566990 [TBL] [Abstract][Full Text] [Related]
6. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Blaszczak A; Georgopoulos C; Liberek K Mol Microbiol; 1999 Jan; 31(1):157-66. PubMed ID: 9987118 [TBL] [Abstract][Full Text] [Related]
7. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
8. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833 [TBL] [Abstract][Full Text] [Related]
9. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M; Milek S; Klauck E; Hengge R; Narberhaus F Microbiology (Reading); 2007 Aug; 153(Pt 8):2560-2571. PubMed ID: 17660420 [TBL] [Abstract][Full Text] [Related]
10. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372 [TBL] [Abstract][Full Text] [Related]
11. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32). Tatsuta T; Joob DM; Calendar R; Akiyama Y; Ogura T FEBS Lett; 2000 Aug; 478(3):271-5. PubMed ID: 10930581 [TBL] [Abstract][Full Text] [Related]
12. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP. Noguchi A; Ikeda A; Mezaki M; Fukumori Y; Kanemori M J Bacteriol; 2014 May; 196(9):1694-703. PubMed ID: 24532774 [TBL] [Abstract][Full Text] [Related]
13. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823 [TBL] [Abstract][Full Text] [Related]
14. The heat shock response of Escherichia coli. Arsène F; Tomoyasu T; Bukau B Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710 [TBL] [Abstract][Full Text] [Related]
15. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. Schramm FD; Heinrich K; Thüring M; Bernhardt J; Jonas K PLoS Genet; 2017 Dec; 13(12):e1007148. PubMed ID: 29281627 [TBL] [Abstract][Full Text] [Related]
16. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558 [TBL] [Abstract][Full Text] [Related]
17. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. Kanemori M; Nishihara K; Yanagi H; Yura T J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683 [TBL] [Abstract][Full Text] [Related]
18. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J; Newton A J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189 [TBL] [Abstract][Full Text] [Related]
19. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator. Liberek K; Wall D; Georgopoulos C Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6224-8. PubMed ID: 7603976 [TBL] [Abstract][Full Text] [Related]
20. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. Bertani D; Oppenheim AB; Narberhaus F FEBS Lett; 2001 Mar; 493(1):17-20. PubMed ID: 11277997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]