BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 10348918)

  • 1. The effect of carboxyl group modification on the chromophore regeneration of archaeopsin-1 and bacterioopsin.
    Sugiyama Y; Fujii K; Mukohata Y
    J Biochem; 1999 Jun; 125(6):1144-50. PubMed ID: 10348918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An insertion or deletion in the extramembrane loop connecting helices E and F of archaerhodopsin-1 affects in vitro refolding and slows the photocycle.
    Sugiyama Y; Koyanagi T; Yamada N; Mukohata Y
    Photochem Photobiol; 1997 Oct; 66(4):541-6. PubMed ID: 9337627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual roles of DMPC and CHAPS in the refolding of bacterial opsins in vitro.
    Sugiyama Y; Mukohata Y
    J Biochem; 1996 Jun; 119(6):1143-9. PubMed ID: 8827450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range effects on the retinal chromophore of bacteriorhodopsin caused by surface carboxyl group modification.
    Renthal R; McMillan K; Guerra L; Garcia MN; Rangel R; Jen CM
    Biochemistry; 1995 Jun; 34(24):7869-78. PubMed ID: 7794898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered protein-chromophore interaction in dicyclohexylcarbodiimide-modified purple membrane sheets.
    Renthal R; Brogley L; Vila J
    Biochim Biophys Acta; 1988 Sep; 935(2):109-14. PubMed ID: 3415982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous ubiquinol analogues affect the fluorescence of NCD-4 bound to aspartate-160 of yeast cytochrome b.
    Wang Y; Bruel C; Yan L; Beattie DS
    J Bioenerg Biomembr; 1998 Oct; 30(5):455-64. PubMed ID: 9932648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light activates the reaction of bacteriorhodopsin aspartic acid-115 with dicyclohexylcarbodiimide.
    Renthal R; Cothran M; Espinoza B; Wall KA; Bernard M
    Biochemistry; 1985 Jul; 24(16):4275-9. PubMed ID: 3931674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence quenching of reconstituted NCD-4-labeled cytochrome c oxidase complex by DOXYL-stearic acids.
    Musser SM; Larsen RW; Chan SI
    Biophys J; 1993 Dec; 65(6):2348-59. PubMed ID: 8312474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin.
    Renthal R; Haas P
    J Protein Chem; 1996 Apr; 15(3):281-9. PubMed ID: 8804576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographical organization of cytochrome b6 in the thylakoid membrane of spinach chloroplasts determined by fluorescence studies with N-cyclohexyl-N'-[4-(dimethylamino)naphthyl]carbodiimide.
    Wang Y; Beattie DS
    Biochemistry; 1993 Sep; 32(37):9586-91. PubMed ID: 8373766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a two-transmembrane-helix peptide with lipid bilayers and dodecyl sulfate micelles.
    Renthal R; Brancaleon L; Peña I; Silva F; Chen LY
    Biophys Chem; 2011 Dec; 159(2-3):321-7. PubMed ID: 21924540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spatial structure of (1-36)bacterioopsin solubilized in a methanol-chloroform mixture with sodium dodecylsulfate micelles].
    Pervushin KV; Sobol' AG; Musina LIu; Abdulaeva GV; Arsen'ev AS
    Mol Biol (Mosk); 1992; 26(6):1397-415. PubMed ID: 1491681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
    Booth PJ; Farooq A; Flitsch SL
    Biochemistry; 1996 May; 35(18):5902-9. PubMed ID: 8639552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane helix-helix association: relative stabilities at low pH.
    Valluru N; Silva F; Dhage M; Rodriguez G; Alloor SR; Renthal R
    Biochemistry; 2006 Apr; 45(14):4371-7. PubMed ID: 16584172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A
    Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of bacterio-opsin in Escherichia coli as a water-soluble fusion to maltose binding protein: efficient regeneration of the fusion protein and selective cleavage with trypsin.
    Chen GQ; Gouaux JE
    Protein Sci; 1996 Mar; 5(3):456-67. PubMed ID: 8868482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.