These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 10348918)

  • 41. Mapping the structure of an integral membrane protein under semi-denaturing conditions by laser-induced oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2009 Dec; 394(5):968-81. PubMed ID: 19804782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance.
    Tuzi S; Yamaguchi S; Naito A; Needleman R; Lanyi JK; Saitô H
    Biochemistry; 1996 Jun; 35(23):7520-7. PubMed ID: 8652531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Circular dichroism and cross-linking studies of bacteriorhodopsin mutants.
    Karnaukhova E; Schey KL; Crouch RK
    Amino Acids; 2006 Feb; 30(1):17-23. PubMed ID: 16477391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
    Ihara K; Amemiya T; Miyashita Y; Mukohata Y
    Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intermediate spectra and photocycle kinetics of the Asp96 --> asn mutant bacteriorhodopsin determined by singular value decomposition with self-modeling.
    Zimányi L; Kulcsár A; Lanyi JK; Sears DF; Saltiel J
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4414-9. PubMed ID: 10200276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9.
    Ferguson N; Capaldi AP; James R; Kleanthous C; Radford SE
    J Mol Biol; 1999 Mar; 286(5):1597-608. PubMed ID: 10064717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved membrane protein folding studies.
    Khanal A; Pan Y; Brown LS; Konermann L
    J Mass Spectrom; 2012 Dec; 47(12):1620-6. PubMed ID: 23280751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Picosecond multidimensional fluorescence spectroscopy: a tool to measure real-time protein dynamics during function.
    Kim TY; Winkler K; Alexiev U
    Photochem Photobiol; 2007; 83(2):378-84. PubMed ID: 17117889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical modification of Glu-953 of the alpha chain of Na+,K(+)-ATPase associated with inactivation of cation occlusion.
    Goldshleger R; Tal DM; Moorman J; Stein WD; Karlish SJ
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6911-5. PubMed ID: 1353883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Consequences of amino acid insertions and/or deletions in transmembrane helix C of bacteriorhodopsin.
    Marti T; Otto H; Rösselet SJ; Heyn MP; Khorana HG
    Proc Natl Acad Sci U S A; 1992 Feb; 89(4):1219-23. PubMed ID: 1531536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I.
    Szundi I; Swartz TE; Bogomolni RA
    Biophys J; 2001 Jan; 80(1):469-79. PubMed ID: 11159417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Dicyclohexylcarbodiimide as an inhibitor of light- and pyrophosphate-induced formation of membrane potential in chromatophores of purple bacteria].
    Pototskiĭ NIa; Samuilov VD
    Biokhimiia; 1983 Aug; 48(8):1235-40. PubMed ID: 6414533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nature of the chromophore binding site of bacteriorhodopsin: the potential role of Arg82 as a principal counterion.
    Kusnetzow A; Singh DL; Martin CH; Barani IJ; Birge RR
    Biophys J; 1999 May; 76(5):2370-89. PubMed ID: 10233056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromophore reorientations in the early photolysis intermediates of bacteriorhodopsin.
    Esquerra RM; Che D; Shapiro DB; Lewis JW; Bogomolni RA; Fukushima J; Kliger DS
    Biophys J; 1996 Feb; 70(2):962-70. PubMed ID: 8789113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane.
    Hildebrandt V; Fendler K; Heberle J; Hoffmann A; Bamberg E; Büldt G
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3578-82. PubMed ID: 8386375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle.
    Olson KD; Spudich JL
    Biophys J; 1993 Dec; 65(6):2578-85. PubMed ID: 8312493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Opsin-Mediated Inhibition of Bacterioruberin Synthesis in Halophilic Archaea.
    Peck RF; Pleşa AM; Graham SM; Angelini DR; Shaw EL
    J Bacteriol; 2017 Nov; 199(21):. PubMed ID: 28784816
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.