These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 10350073)

  • 21. Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism.
    Clapperton JA; Martin SR; Smerdon SJ; Gamblin SJ; Bayley PM
    Biochemistry; 2002 Dec; 41(50):14669-79. PubMed ID: 12475216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural requirements for N-trimethylation of lysine 115 of calmodulin.
    Cobb JA; Roberts DM
    J Biol Chem; 2000 Jun; 275(25):18969-75. PubMed ID: 10766755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin.
    Ota IM; Clarke S
    Biochemistry; 1989 May; 28(9):4020-7. PubMed ID: 2502176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.
    Ishida H; Takahashi K; Nakashima K; Kumaki Y; Nakata M; Hikichi K; Yazawa M
    Biochemistry; 2000 Nov; 39(45):13660-8. PubMed ID: 11076504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation.
    Wu X; Reid RE
    Biochemistry; 1997 Mar; 36(12):3608-16. PubMed ID: 9132012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state.
    Evenäs J; Thulin E; Malmendal A; Forsén S; Carlström G
    Biochemistry; 1997 Mar; 36(12):3448-57. PubMed ID: 9131994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.
    Kataoka M; Head JF; Persechini A; Kretsinger RH; Engelman DM
    Biochemistry; 1991 Feb; 30(5):1188-92. PubMed ID: 1991098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-dependent structural coupling between opposing globular domains of calmodulin involves the central helix.
    Sun H; Yin D; Squier TC
    Biochemistry; 1999 Sep; 38(38):12266-79. PubMed ID: 10493794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of calcium by calmodulin: influence of the calmodulin binding domain of the plasma membrane calcium pump.
    Yazawa M; Vorherr T; James P; Carafoli E; Yagi K
    Biochemistry; 1992 Mar; 31(12):3171-6. PubMed ID: 1313288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural determinants of Ca2+ exchange and affinity in the C terminal of cardiac troponin C.
    Wang S; George SE; Davis JP; Johnson JD
    Biochemistry; 1998 Oct; 37(41):14539-44. PubMed ID: 9772182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of the erythrocyte Ca2(+)-ATPase by mutant calmodulins with positively charged amino acid substitutions.
    Kosk-Kosicka D; Bzdega T
    Biochemistry; 1991 Jan; 30(1):65-70. PubMed ID: 1824817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium effects on calmodulin lysine reactivities.
    Giedroc DP; Puett D; Sinha SK; Brew K
    Arch Biochem Biophys; 1987 Jan; 252(1):136-44. PubMed ID: 3101593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gain-of-function mutations in a human calmodulin-like protein identify residues critical for calmodulin action in yeast.
    Harris E; Yaswen P; Thorner J
    Mol Gen Genet; 1995 Apr; 247(2):137-47. PubMed ID: 7753022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A series of point mutations reveal interactions between the calcium-binding sites of calmodulin.
    Starovasnik MA; Su DR; Beckingham K; Klevit RE
    Protein Sci; 1992 Feb; 1(2):245-53. PubMed ID: 1363934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digestion of troponin C with trypsin in the presence and absence of Ca2+. Identification of cleavage points.
    Grabarek Z; Drabikowski W; Vinokurov L; Lu RC
    Biochim Biophys Acta; 1981 Dec; 671(2):227-33. PubMed ID: 7326266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central helix role in the contraction-relaxation switching mechanisms of permeabilized skeletal and smooth muscles with genetic manipulation of calmodulin.
    Gulati J; Persechini A; Babu A
    FEBS Lett; 1990 Apr; 263(2):340-4. PubMed ID: 2335238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The central helix of calmodulin functions as a flexible tether.
    Persechini A; Kretsinger RH
    J Biol Chem; 1988 Sep; 263(25):12175-8. PubMed ID: 3137220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the mutational effects on calmodulin structure: prediction of alteration in the amino acid interactions.
    Rashid A; Khurshid R; Begum M; Gul-e-Raana ; Latif M; Salim A
    Biochem Biophys Res Commun; 2004 Apr; 317(2):363-9. PubMed ID: 15063766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching.
    Jaren OR; Harmon S; Chen AF; Shea MA
    Biochemistry; 2000 Jun; 39(23):6881-90. PubMed ID: 10841769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.