BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10350605)

  • 1. Binding of polylysine to GroEL. Inhibition of the refolding of mMDH.
    Lau CK; Churchich JE
    Biochim Biophys Acta; 1999 May; 1431(2):282-9. PubMed ID: 10350605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of partially-folded mitochondrial malate dehydrogenase by GroEL. Steady and time-dependent emission anisotropy measurements.
    Churchich JE
    Protein Sci; 1998 Dec; 7(12):2587-94. PubMed ID: 9865953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding.
    Hayer-Hartl MK; Ewalt KL; Hartl FU
    Biol Chem; 1999 May; 380(5):531-40. PubMed ID: 10384959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpn10 (groES).
    Hutchinson JP; el-Thaher TS; Miller AD
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):405-10. PubMed ID: 7916564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes at the nucleotide binding of GroEL induced by binding of protein substrates. Luminescence studies.
    Churchich JE
    J Biol Chem; 1997 Aug; 272(32):19645-8. PubMed ID: 9242617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction.
    Ranson NA; Burston SG; Clarke AR
    J Mol Biol; 1997 Mar; 266(4):656-64. PubMed ID: 9102459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant glyoxysomal but not mitochondrial malate dehydrogenase can fold without chaperone assistance.
    Gietl C; Seidel C; Svendsen I
    Biochim Biophys Acta; 1996 May; 1274(1-2):48-58. PubMed ID: 8645694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli chaperonins cpn60 (groEL) and cpn10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase.
    Miller AD; Maghlaoui K; Albanese G; Kleinjan DA; Smith C
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):139-44. PubMed ID: 8097086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of protein substrates by protein-disulfide isomerase. A sequence of the b' domain responds to substrate binding.
    Cheung PY; Churchich JE
    J Biol Chem; 1999 Nov; 274(46):32757-61. PubMed ID: 10551835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refolding of thioredoxin reductase assisted by groEL and PDI.
    Cheung PY; Churchich JE; Lee KS
    Biochem Biophys Res Commun; 1999 Feb; 255(1):17-22. PubMed ID: 10082648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.
    Potnis AA; Rajaram H; Apte SK
    J Biochem; 2016 Mar; 159(3):295-304. PubMed ID: 26449235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling between protein folding and allostery in the GroE chaperonin system.
    Yifrach O; Horovitz A
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1521-4. PubMed ID: 10677493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of partially folded mitochondrial malate dehydrogenase by thioredoxin.
    Li W; Churchich JE
    Eur J Biochem; 1997 May; 246(1):127-32. PubMed ID: 9210474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay of malate dehydrogenase. A substrate for the E. coli chaperonins GroEL and GroES.
    Hayer-Hartl M
    Methods Mol Biol; 2000; 140():127-32. PubMed ID: 11484479
    [No Abstract]   [Full Text] [Related]  

  • 19. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro.
    Hartman DJ; Surin BP; Dixon NE; Hoogenraad NJ; Høj PB
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2276-80. PubMed ID: 8096339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual structure in urea-denatured chaperonin GroEL.
    Gorovits BM; Seale JW; Horowitz PM
    Biochemistry; 1995 Oct; 34(42):13928-33. PubMed ID: 7577988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.