BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10352179)

  • 1. Analysis of the cooperative thermal unfolding of the td intron of bacteriophage T4.
    Brion P; Michel F; Schroeder R; Westhof E
    Nucleic Acids Res; 1999 Jun; 27(12):2494-502. PubMed ID: 10352179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of folding of the RNA pseudoknot of the T4 gene 32 autoregulatory messenger RNA.
    Qiu H; Kaluarachchi K; Du Z; Hoffman DW; Giedroc DP
    Biochemistry; 1996 Apr; 35(13):4176-86. PubMed ID: 8672454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components.
    Jaeger L; Westhof E; Michel F
    J Mol Biol; 1993 Nov; 234(2):331-46. PubMed ID: 8230218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability.
    Gluick TC; Wills NM; Gesteland RF; Draper DE
    Biochemistry; 1997 Dec; 36(51):16173-86. PubMed ID: 9405051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic model for triple-helical domains in self-splicing group I introns studied by ultraviolet and circular dichroism spectroscopy.
    Sarkar M; Sigurdsson S; Tomac S; Sen S; Rozners E; Sjöberg BM; Strömberg R; Gräslund A
    Biochemistry; 1996 Apr; 35(15):4678-88. PubMed ID: 8664257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of specific mutations on the thermal stability of the td group I intron in vitro and on its splicing efficiency in vivo: a comparative study.
    Brion P; Schroeder R; Michel F; Westhof E
    RNA; 1999 Jul; 5(7):947-58. PubMed ID: 10411138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism.
    Nakano S; Cerrone AL; Bevilacqua PC
    Biochemistry; 2003 Mar; 42(10):2982-94. PubMed ID: 12627964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-directed, hydroxylamine-generated suppressor mutation in the P3 pairing region of the bacteriophage T4 td intron partially restores self-splicing capability.
    Brown MD; DeYoung KL; Hall DH
    Mol Microbiol; 1994 Jul; 13(1):89-95. PubMed ID: 7984096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability.
    Nixon PL; Giedroc DP
    Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans.
    Zhang Y; Leibowitz MJ
    Nucleic Acids Res; 2001 Jun; 29(12):2644-53. PubMed ID: 11410674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The environment of two metal ions surrounding the splice site of a group I intron.
    Streicher B; Westhof E; Schroeder R
    EMBO J; 1996 May; 15(10):2556-64. PubMed ID: 8665863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding of group I introns from bacteriophage T4 involves internalization of the catalytic core.
    Heuer TS; Chandry PS; Belfort M; Celander DW; Cech TR
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11105-9. PubMed ID: 1763026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of RNA tertiary structure by monovalent cations.
    Shiman R; Draper DE
    J Mol Biol; 2000 Sep; 302(1):79-91. PubMed ID: 10964562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerted effects of two activator modules on the group I ribozyme reaction.
    Ikawa Y; Shiohara T; Ohuchi S; Inoue T
    J Biochem; 2009 Apr; 145(4):429-35. PubMed ID: 19122204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns.
    Allain FH; Varani G
    Nucleic Acids Res; 1995 Feb; 23(3):341-50. PubMed ID: 7885828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibiotic-induced oligomerisation of group I intron RNA.
    Wank H; Schroeder R
    J Mol Biol; 1996 Apr; 258(1):53-61. PubMed ID: 8613991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.