BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10352721)

  • 1. Stereoselective high-affinity reduction of ketonic nortriptyline metabolites and of ketotifen by aldo-keto reductases from human liver.
    Breyer-Pfaff U; Nill K
    Adv Exp Med Biol; 1999; 463():473-80. PubMed ID: 10352721
    [No Abstract]   [Full Text] [Related]  

  • 2. High-affinity stereoselective reduction of the enantiomers of ketotifen and of ketonic nortriptyline metabolites by aldo-keto reductases from human liver.
    Breyer-Pfaff U; Nill K
    Biochem Pharmacol; 2000 Feb; 59(3):249-60. PubMed ID: 10609553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemico-Biological Interactions. Enzymology and molecular biology of carbonyl metabolism 16. Introduction.
    Plapp BV; Kedishvili NY; Rižner TL; Maser E; O'Brien PJ
    Chem Biol Interact; 2013 Feb; 202(1-3):1. PubMed ID: 23497822
    [No Abstract]   [Full Text] [Related]  

  • 4. The influence of cytochrome P-450 inducers on carbonyl reduction in mouse liver.
    Maser E; Hahnemann B; Legrum W; Oppermann U; Netter KJ
    Arch Toxicol Suppl; 1991; 14():188-92. PubMed ID: 1805730
    [No Abstract]   [Full Text] [Related]  

  • 5. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver.
    Ohara H; Miyabe Y; Deyashiki Y; Matsuura K; Hara A
    Biochem Pharmacol; 1995 Jul; 50(2):221-7. PubMed ID: 7632166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.
    Endo S; Matsunaga T; Arai Y; Ikari A; Tajima K; El-Kabbani O; Yamano S; Hara A; Kitade Y
    Drug Metab Dispos; 2014 Apr; 42(4):803-12. PubMed ID: 24510382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daunorubicin reduction mediated by aldehyde and ketone reductases.
    Ahmed NK; Felsted RL; Bachur NR
    Xenobiotica; 1981 Feb; 11(2):131-6. PubMed ID: 6263015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aldo-keto reductases: an overview.
    Flynn TG; Green NC
    Adv Exp Med Biol; 1993; 328():251-7. PubMed ID: 8493901
    [No Abstract]   [Full Text] [Related]  

  • 9. Microbial aldo-keto reductases.
    Ellis EM
    FEMS Microbiol Lett; 2002 Nov; 216(2):123-31. PubMed ID: 12435492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases.
    Calam E; Porté S; Fernández MR; Farrés J; Parés X; Biosca JA
    Chem Biol Interact; 2013 Feb; 202(1-3):195-203. PubMed ID: 23295224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel murine aldo-keto reductase.
    Bohren KM; Barski OA; Gabbay KH
    Adv Exp Med Biol; 1997; 414():455-64. PubMed ID: 9059651
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterisation of a novel mouse liver aldo-keto reductase AKR7A5.
    Hinshelwood A; McGarvie G; Ellis E
    FEBS Lett; 2002 Jul; 523(1-3):213-8. PubMed ID: 12123834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydrodiol dehydrogenase activities of rabbit liver are associated with hydroxysteroid dehydrogenases and aldo-keto reductases.
    Klein J; Thomas H; Post K; Wörner W; Oesch F
    Eur J Biochem; 1992 May; 205(3):1155-62. PubMed ID: 1576998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases.
    Maser E
    Biochem Pharmacol; 1995 Feb; 49(4):421-40. PubMed ID: 7872949
    [No Abstract]   [Full Text] [Related]  

  • 15. Stereoselective reversible ketone formation from 10-hydroxylated nortriptyline metabolites in human liver.
    Breyer-Pfaff U; Nill K
    Xenobiotica; 1995 Dec; 25(12):1311-25. PubMed ID: 8719907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldo-keto reductases in norepinephrine metabolism.
    Sato S; Kawamura M; Eisenhofer G; Kopin IJ; Fujisawa S; Kador PF
    Adv Exp Med Biol; 1999; 463():459-63. PubMed ID: 10352719
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification and characterization of a novel pyrazole-sensitive carbonyl reductase in guinea pig lung.
    Nakayama T; Hara A; Sawada H
    Arch Biochem Biophys; 1982 Sep; 217(2):564-73. PubMed ID: 6753749
    [No Abstract]   [Full Text] [Related]  

  • 18. Lens aldo-keto reductase of Camelus dromedarius: purification and properties.
    Del Corso A; Barsacchi D; Osman AM; Mohamed AS; Tozzi MG; Camici M; Mura U
    Biochim Biophys Acta; 1989 Oct; 993(1):116-20. PubMed ID: 2679888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of befunolol reductase from rabbit liver.
    Nozaki Y; Imamura Y; Otagiri M
    Chem Pharm Bull (Tokyo); 1990 Jan; 38(1):156-8. PubMed ID: 2186874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of aldo-keto reductase family members to the pathobiology of diabetic nephropathy and renal development.
    Wallner EI; Wada J; Tramonti G; Lin S; Srivastava SK; Kanwar YS
    Ren Fail; 2001; 23(3-4):311-20. PubMed ID: 11499547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.