These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10353795)

  • 21. Evolution of Sulfobacillus thermosulfidooxidans secreting alginate during bioleaching of chalcopyrite concentrate.
    Yu RL; Liu A; Liu Y; Yu Z; Peng T; Wu X; Shen L; Liu Y; Li J; Liu X; Qiu G; Chen M; Zeng W
    J Appl Microbiol; 2017 Jun; 122(6):1586-1594. PubMed ID: 28393432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
    Harahuc L; Lizama HM; Suzuki I
    Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of copper (II) selenide by Thiobacillus ferrooxidans.
    Torma AE; Habashi F
    Can J Microbiol; 1972 Nov; 18(11):1780-1. PubMed ID: 5086113
    [No Abstract]   [Full Text] [Related]  

  • 24. Influence of heterotrophic microbial growth on biological oxidation of pyrite.
    Marchand EA; Silverstein J
    Environ Sci Technol; 2002 Dec; 36(24):5483-90. PubMed ID: 12521179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential of mining slag as a substrate for microbial growth and the microbiological analysis of slag and slag seepage.
    Male DW; Leduc LG; Ferroni GD
    Antonie Van Leeuwenhoek; 1997 May; 71(4):379-86. PubMed ID: 9195014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation.
    Wu A; Yin S; Wang H; Qin W; Qiu G
    Bioresour Technol; 2009 Mar; 100(6):1931-6. PubMed ID: 19036579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.
    Feng S; Yang H; Wang W
    Bioresour Technol; 2016 Jan; 200():186-93. PubMed ID: 26492170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces.
    Yang Y; Tan SN; Glenn AM; Harmer S; Bhargava S; Chen M
    Biofouling; 2015; 31(7):575-86. PubMed ID: 26343200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans.
    Natarajan KA
    Biotechnol Bioeng; 1992 Apr; 39(9):907-13. PubMed ID: 18601028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp.
    Yang H; Feng S; Xin Y; Wang W
    Bioresour Technol; 2014 Feb; 154():185-91. PubMed ID: 24389460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance.
    Das A; Modak JM; Natarajan KA
    Antonie Van Leeuwenhoek; 1998 Apr; 73(3):215-22. PubMed ID: 9801765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].
    Malakhova PT; Chebotarev GM; Kovalenko EV; Volkov IuA
    Mikrobiologiia; 1981; 50(1):147-55. PubMed ID: 7219212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper and manganese storage in the rat, rabbit, and guinea pig.
    LORENZEN EJ; SMITH SE
    J Nutr; 1947 Feb; 33(2):143-54. PubMed ID: 20283722
    [No Abstract]   [Full Text] [Related]  

  • 34. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.
    Latorre M; Ehrenfeld N; Cortés MP; Travisany D; Budinich M; Aravena A; González M; Bobadilla-Fazzini RA; Parada P; Maass A
    Bioresour Technol; 2016 Jan; 200():29-34. PubMed ID: 26476161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-homogeneous biofilm modeling applied to bioleaching processes.
    Olivera-Nappa A; Picioreanu C; Asenjo JA
    Biotechnol Bioeng; 2010 Jul; 106(4):660-76. PubMed ID: 20229512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.
    Han Y; Ma X; Zhao W; Chang Y; Zhang X; Wang X; Wang J; Huang Z
    J Biosci Bioeng; 2013 Oct; 116(4):465-71. PubMed ID: 23673133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assay of bacterial copper leaching from covellin at alkaline initial pH.
    Lejczak A; Ostrowski M; Kunicki-Goldfinger W
    Acta Microbiol Pol; 1980; 29(1):69-73. PubMed ID: 6155056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans.
    Lewis AJ; Miller JD
    Can J Microbiol; 1977 Mar; 23(3):319-24. PubMed ID: 15717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer.
    Panda S; Parhi PK; Nayak BD; Pradhan N; Mohapatra UB; Sukla LB
    Bioresour Technol; 2013 Feb; 130():332-8. PubMed ID: 23313677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.