BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10353851)

  • 1. Adenine base unstacking dominates the observed enthalpy and heat capacity changes for the Escherichia coli SSB tetramer binding to single-stranded oligoadenylates.
    Kozlov AG; Lohman TM
    Biochemistry; 1999 Jun; 38(22):7388-97. PubMed ID: 10353851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent heat capacity change accompanying a nonspecific protein-DNA interaction. Escherichia coli SSB tetramer binding to oligodeoxyadenylates.
    Ferrari ME; Lohman TM
    Biochemistry; 1994 Nov; 33(43):12896-910. PubMed ID: 7947696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy.
    Kozlov AG; Lohman TM
    J Mol Biol; 1998 May; 278(5):999-1014. PubMed ID: 9600857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large contributions of coupled protonation equilibria to the observed enthalpy and heat capacity changes for ssDNA binding to Escherichia coli SSB protein.
    Kozlov AG; Lohman TM
    Proteins; 2000; Suppl 4():8-22. PubMed ID: 11013397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA.
    Kozlov AG; Lohman TM
    Biochemistry; 2006 Apr; 45(16):5190-205. PubMed ID: 16618108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly salt-dependent enthalpy change for Escherichia coli SSB protein-nucleic acid binding due to ion-protein interactions.
    Lohman TM; Overman LB; Ferrari ME; Kozlov AG
    Biochemistry; 1996 Apr; 35(16):5272-9. PubMed ID: 8611514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes.
    Lohman TM; Bujalowski W
    Biochemistry; 1994 May; 33(20):6167-76. PubMed ID: 8193130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode.
    Ferrari ME; Bujalowski W; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):106-23. PubMed ID: 8107097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of the dimeric Deinococcus radiodurans single-stranded DNA binding protein to single-stranded DNA.
    Kozlov AG; Eggington JM; Cox MM; Lohman TM
    Biochemistry; 2010 Sep; 49(38):8266-75. PubMed ID: 20795631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices.
    Holbrook JA; Capp MW; Saecker RM; Record MT
    Biochemistry; 1999 Jun; 38(26):8409-22. PubMed ID: 10387087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomers of the Escherichia coli SSB-1 mutant protein bind single-stranded DNA.
    Bujalowski W; Lohman TM
    J Mol Biol; 1991 Jan; 217(1):63-74. PubMed ID: 1988680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions.
    Overman LB; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):165-78. PubMed ID: 8107102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae replication protein A binds to single-stranded DNA in multiple salt-dependent modes.
    Kumaran S; Kozlov AG; Lohman TM
    Biochemistry; 2006 Oct; 45(39):11958-73. PubMed ID: 17002295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. I. Evidence and a quantitative model.
    Bujalowski W; Lohman TM
    J Mol Biol; 1989 May; 207(1):249-68. PubMed ID: 2661832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus.
    Lundbäck T; Hansson H; Knapp S; Ladenstein R; Härd T
    J Mol Biol; 1998 Mar; 276(4):775-86. PubMed ID: 9500918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes.
    Lohman TM; Bujalowski W
    Biochemistry; 1988 Apr; 27(7):2260-5. PubMed ID: 3289611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single-stranded DNA binding.
    Ferrari ME; Fang J; Lohman TM
    Biophys Chem; 1997 Feb; 64(1-3):235-51. PubMed ID: 9127948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the DNA binding domain of E. coli SSB bound to ssDNA.
    Raghunathan S; Kozlov AG; Lohman TM; Waksman G
    Nat Struct Biol; 2000 Aug; 7(8):648-52. PubMed ID: 10932248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.