These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10353995)

  • 1. Trace elements in soil and coniferous needles.
    Blanusa M; Prester L; Matek M; Kucak A
    Bull Environ Contam Toxicol; 1999 Jun; 62(6):700-7. PubMed ID: 10353995
    [No Abstract]   [Full Text] [Related]  

  • 2. Sequential extraction of copper, lead, cadmium, and zinc in sediments from Ebro river (Spain): relationship with levels detected in earthworms.
    Ramos L; González MJ; Hernández LM
    Bull Environ Contam Toxicol; 1999 Mar; 62(3):301-8. PubMed ID: 10085173
    [No Abstract]   [Full Text] [Related]  

  • 3. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction.
    Mertens J; Luyssaert S; Verheyen K
    Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of heavy metals in a woodland food web.
    Scharenberg W; Ebeling E
    Bull Environ Contam Toxicol; 1996 Mar; 56(3):389-96. PubMed ID: 8825960
    [No Abstract]   [Full Text] [Related]  

  • 5. [Heavy metals in the soil of allotment gardens in industrialized post-flooded areas in the Opole region]].
    Bozek U; Królik B
    Rocz Panstw Zakl Hig; 2003; 54(2):137-44. PubMed ID: 14531078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Transfer characteristics of mercury, lead, cadmium, zinc and cuprum from soil to vegetable around zinc smelting plant].
    Zheng N; Wang QC; Zheng DM
    Huan Jing Ke Xue; 2007 Jun; 28(6):1349-54. PubMed ID: 17674748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction.
    Kim IS; Kang KH; Johnson-Green P; Lee EJ
    Environ Pollut; 2003; 126(2):235-43. PubMed ID: 12927494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas.
    Pietrzykowski M; Socha J; van Doorn NS
    Sci Total Environ; 2014 Feb; 470-471():501-10. PubMed ID: 24176697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contamination of Polish national parks with heavy metals.
    Staszewski T; Łukasik W; Kubiesa P
    Environ Monit Assess; 2012 Jul; 184(7):4597-608. PubMed ID: 21842164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metals and organic hydrocarbons in sediments from the Waikareao Estuary, Tauranga Harbour, New Zealand.
    Burggraaf S; Wilkins AL; Langdon AG; Kim ND
    Bull Environ Contam Toxicol; 1997 Jun; 58(6):871-8. PubMed ID: 9136648
    [No Abstract]   [Full Text] [Related]  

  • 11. Heavy metal content of black teas consumed in Iran.
    Falahi E; Hedaiati R
    Food Addit Contam Part B Surveill; 2013; 6(2):123-6. PubMed ID: 24779877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere.
    Al-Alawi MM; Mandiwana KL
    J Hazard Mater; 2007 Sep; 148(1-2):43-6. PubMed ID: 17363145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China.
    Li X; Li Z; Lin CJ; Bi X; Liu J; Feng X; Zhang H; Chen J; Wu T
    Ecotoxicol Environ Saf; 2018 Oct; 161():99-110. PubMed ID: 29879579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal levels in tissues of Eurasian otters (Lutra lutra) from Hungary: variation with sex, age, condition and location.
    Lanszki J; Orosz E; Sugár L
    Chemosphere; 2009 Feb; 74(5):741-3. PubMed ID: 19036400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-destructive pollution exposure assessment by means of wood mice hair.
    Beernaert J; Scheirs J; Leirs H; Blust R; Verhagen R
    Environ Pollut; 2007 Jan; 145(2):443-51. PubMed ID: 16828531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal availability in soil in the presence of anionic surfactants.
    Hernandez-Soriano MC; Degryse F; Smolders E
    Commun Agric Appl Biol Sci; 2008; 73(1):157-61. PubMed ID: 18831265
    [No Abstract]   [Full Text] [Related]  

  • 17. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient.
    Notten MJ; Oosthoek AJ; Rozema J; Aerts R
    Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal concentrations in earthworms following long-term nutrient enrichment.
    Brewer SR; Barrett GW
    Bull Environ Contam Toxicol; 1995 Jan; 54(1):120-7. PubMed ID: 7756774
    [No Abstract]   [Full Text] [Related]  

  • 19. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK
    Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metals distribution in soils around the cement factory in southern Jordan.
    Al-Khashman OA; Shawabkeh RA
    Environ Pollut; 2006 Apr; 140(3):387-94. PubMed ID: 16361028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.