BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10354284)

  • 1. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide.
    Koivisto A; Pittner J; Froelich M; Persson AE
    Kidney Int; 1999 Jun; 55(6):2368-75. PubMed ID: 10354284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Activation characteristics of ouabain-sensitive respiration and Na,K-ATPase in the kidney cortex and medullary zone of rats adapted to cold].
    Medvedev LN; Zamaĭ TN
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1984; (7):18-23. PubMed ID: 6087941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ethacrynic acid and furosemide on respiration of isolated kidney tubules: the role of ion transport and the source of metabolic energy.
    Cunarro JA; Weiner MW
    J Pharmacol Exp Ther; 1978 Jul; 206(1):198-206. PubMed ID: 660550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
    Darby PJ; Kim N; Hare GM; Tsui A; Wang Z; Harrington A; Mazer CD
    Perfusion; 2013 Nov; 28(6):504-11. PubMed ID: 23719516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of selegiline on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies.
    Drozak J; Kozlowski M; Doroszewska R; Pera L; Derlacz R; Jarzyna R; Bryla J
    Chem Biol Interact; 2007 Dec; 170(3):162-76. PubMed ID: 17767924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bradykinin stimulation of oxidative metabolism in renal cortical tubules from rabbit. Possible role of arachidonic acid.
    Brazy PC; Trellis DR; Klotman PE
    J Clin Invest; 1985 Nov; 76(5):1812-8. PubMed ID: 2997289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide decreases renal medullary Na+, K+-ATPase activity through cyclic GMP-protein kinase G dependent mechanism.
    Bełtowski J; Marciniak A; Wójcicka G; Górny D
    J Physiol Pharmacol; 2003 Jun; 54(2):191-210. PubMed ID: 12832721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
    Welch WJ; Baumgärtl H; Lübbers D; Wilcox CS
    Kidney Int; 2001 Jan; 59(1):230-7. PubMed ID: 11135075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla.
    Liss P; Nygren A; Erikson U; Ulfendahl HR
    Kidney Int; 1998 Mar; 53(3):698-702. PubMed ID: 9507216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney.
    Johannes T; Mik EG; Ince C
    J Appl Physiol (1985); 2006 Apr; 100(4):1301-10. PubMed ID: 16357065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of contrast media on renal microcirculation and oxygen tension. An experimental study in the rat.
    Liss P
    Acta Radiol Suppl; 1997; 409():1-29. PubMed ID: 9100489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment.
    Schiffer TA; Gustafsson H; Palm F
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F677-F681. PubMed ID: 29846107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F634-47. PubMed ID: 20519375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cAMP on the activity and the phosphorylation of Na+,K(+)-ATPase in rat thick ascending limb of Henle.
    Kiroytcheva M; Cheval L; Carranza ML; Martin PY; Favre H; Doucet A; Féraille E
    Kidney Int; 1999 May; 55(5):1819-31. PubMed ID: 10231444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of atrial natriuretic factor and fate of cyclic-guanosine-monophosphate in the rat kidney.
    Syrén ML
    Acta Physiol Scand; 1997 May; 160(1):1-7. PubMed ID: 9179304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide.
    Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F979-96. PubMed ID: 21849492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endotoxin-induced changes in intrarenal pO2, measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging.
    James PE; Bacic G; Grinberg OY; Goda F; Dunn JF; Jackson SK; Swartz HM
    Free Radic Biol Med; 1996; 21(1):25-34. PubMed ID: 8791090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.