These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10354430)

  • 1. Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures.
    Carrasco B; García de la Torre J
    Biophys J; 1999 Jun; 76(6):3044-57. PubMed ID: 10354430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres.
    Carrasco B; García de la Torre J; Zipper P
    Eur Biophys J; 1999; 28(6):510-5. PubMed ID: 10460344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building hydrodynamic bead-shell models for rigid bioparticles of arbitrary shape.
    Garcia de la Torre J
    Biophys Chem; 2001 Dec; 94(3):265-74. PubMed ID: 11804736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel size-independent modeling of the dilute solution conformation of the immunoglobulin IgG Fab' domain using SOLPRO and ELLIPS.
    Carrasco B; de la Torre JG; Byron O; King D; Walters C; Jones S; Harding SE
    Biophys J; 1999 Dec; 77(6):2902-10. PubMed ID: 10585914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
    Zuk PJ; Cichocki B; Szymczak P
    Biophys J; 2018 Sep; 115(5):782-800. PubMed ID: 30144937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.
    Allison SA; Pei H
    J Phys Chem B; 2009 Jun; 113(23):8056-65. PubMed ID: 19453112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved calculation of rotational diffusion and intrinsic viscosity of bead models for macromolecules and nanoparticles.
    de la Torre JG; Echenique Gdel R; Ortega A
    J Phys Chem B; 2007 Feb; 111(5):955-61. PubMed ID: 17266248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic properties of rigid macromolecules composed of ellipsoidal and cylindrical subunits.
    García de la Torre J; Carrasco B
    Biopolymers; 2002 Mar; 63(3):163-7. PubMed ID: 11787004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2015 Jul; 119(26):8425-39. PubMed ID: 26068580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid or flexible bead models.
    Garcia de la Torre J; Ortega A; Perez Sanchez HE; Hernandez Cifre JG
    Biophys Chem; 2005 Jul; 116(2):121-8. PubMed ID: 15950824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic Modeling and Its Application in AUC.
    Rocco M; Byron O
    Methods Enzymol; 2015; 562():81-108. PubMed ID: 26412648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure.
    García De La Torre J; Huertas ML; Carrasco B
    Biophys J; 2000 Feb; 78(2):719-30. PubMed ID: 10653785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HYDROMIC: prediction of hydrodynamic properties of rigid macromolecular structures obtained from electron microscopy images.
    García de la Torre J; Llorca O; Carrascosa JL; Valpuesta JM
    Eur Biophys J; 2001 Oct; 30(6):457-62. PubMed ID: 11718300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of the solution properties of flexible macromolecules: methods and applications.
    García de la Torre J; Pérez Sánchez HE; Ortega A; Hernández JG; Fernandes MX; Díaz FG; López Martínez MC
    Eur Biophys J; 2003 Aug; 32(5):477-86. PubMed ID: 12698288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review.
    García de la Torre J; Hernández Cifre JG
    J Mol Biol; 2020 Apr; 432(9):2930-2948. PubMed ID: 31877325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility.
    Ortega A; García de la Torre J
    Biomacromolecules; 2007 Aug; 8(8):2464-75. PubMed ID: 17645309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic properties of a double-helical model for DNA.
    Garcia de la Torre J; Navarro S; Lopez Martinez MC
    Biophys J; 1994 May; 66(5):1573-9. PubMed ID: 8061206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic multibead modeling: problems, pitfalls and solutions. 3. Comparison of new approaches for improved predictions of translational properties.
    Zipper P; Durchschlag H
    Eur Biophys J; 2013 Jul; 42(7):559-73. PubMed ID: 23700224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the conformation and dynamics of a double-helical model for DNA.
    Huertas ML; Navarro S; Lopez Martinez MC; García de la Torre J
    Biophys J; 1997 Dec; 73(6):3142-53. PubMed ID: 9414226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.