BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10354446)

  • 1. Binding of calcium ions to bacteriorhodopsin.
    Váró G; Brown LS; Needleman R; Lanyi JK
    Biophys J; 1999 Jun; 76(6):3219-26. PubMed ID: 10354446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin.
    Balashov SP; Govindjee R; Imasheva ES; Misra S; Ebrey TG; Feng Y; Crouch RK; Menick DR
    Biochemistry; 1995 Jul; 34(27):8820-34. PubMed ID: 7612623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.
    Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85-->Asn and Asp212-->Asn: effects of pH and anions.
    Moltke S; Krebs MP; Mollaaghababa R; Khorana HG; Heyn MP
    Biophys J; 1995 Nov; 69(5):2074-83. PubMed ID: 8580351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle.
    Balashov SP; Govindjee R; Kono M; Imasheva E; Lukashev E; Ebrey TG; Crouch RK; Menick DR; Feng Y
    Biochemistry; 1993 Oct; 32(39):10331-43. PubMed ID: 8399176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The titrations of Asp-85 and of the cation binding residues in bacteriorhodopsin are not coupled.
    Eliash T; Ottolenghi M; Sheves M
    FEBS Lett; 1999 Mar; 447(2-3):307-10. PubMed ID: 10214967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of the retinal subpicosecond photoisomerization process in acid purple bacteriorhodopsin and some bacteriorhodopsin mutants by chloride ions.
    Logunov SL; el-Sayed MA; Lanyi JK
    Biophys J; 1996 Sep; 71(3):1545-53. PubMed ID: 8874028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR.
    Tuzi S; Yamaguchi S; Tanio M; Konishi H; Inoue S; Naito A; Needleman R; Lanyi JK; Saitô H
    Biophys J; 1999 Mar; 76(3):1523-31. PubMed ID: 10049332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base.
    Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK
    J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride ion binding to bacteriorhodopsin at low pH: an infrared spectroscopic study.
    Kelemen L; Galajda P; Száraz S; Ormos P
    Biophys J; 1999 Apr; 76(4):1951-8. PubMed ID: 10096893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental effects on the protonation states of active site residues in bacteriorhodopsin.
    Sampogna RV; Honig B
    Biophys J; 1994 May; 66(5):1341-52. PubMed ID: 8061190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of the O630 photointermediate of bacteriorhodopsin is controlled by the state of protonation of several protein residues.
    Bressler S; Friedman N; Li Q; Ottolenghi M; Saha C; Sheves M
    Biochemistry; 1999 Feb; 38(7):2018-25. PubMed ID: 10026284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state 13C CP-MAS NMR investigation.
    Metz G; Siebert F; Engelhard M
    FEBS Lett; 1992 Jun; 303(2-3):237-41. PubMed ID: 1318849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of proton release to the B2 photocurrent of bacteriorhodopsin.
    Misra S
    Biophys J; 1998 Jul; 75(1):382-8. PubMed ID: 9649395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of introducing different carboxylate-containing side chains at position 85 on chromophore formation and proton transport in bacteriorhodopsin.
    Greenhalgh DA; Subramaniam S; Alexiev U; Otto H; Heyn MP; Khorana HG
    J Biol Chem; 1992 Dec; 267(36):25734-8. PubMed ID: 1361187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy.
    Száraz S; Oesterhelt D; Ormos P
    Biophys J; 1994 Oct; 67(4):1706-12. PubMed ID: 7819502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.