These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10354451)

  • 1. Water in actin polymerization.
    Fuller N; Rand RP
    Biophys J; 1999 Jun; 76(6):3261-6. PubMed ID: 10354451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state.
    Splettstoesser T; Noé F; Oda T; Smith JC
    Proteins; 2009 Aug; 76(2):353-64. PubMed ID: 19156817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41.
    Kim E; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1995 Nov; 69(5):2024-32. PubMed ID: 8580345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotically induced electrical signals from actin filaments.
    Cantiello HF; Patenaude C; Zaner K
    Biophys J; 1991 Jun; 59(6):1284-9. PubMed ID: 1873465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial specific volume and adiabatic compressibility of G-actin depend on the bound nucleotide.
    Kikumoto M; Tamura Y; Ooi A; Mihashi K
    J Biochem; 2003 May; 133(5):687-91. PubMed ID: 12801922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.
    Saunders MG; Voth GA
    J Mol Biol; 2011 Oct; 413(1):279-91. PubMed ID: 21856312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cofilin and DNase I affect the conformation of the small domain of actin.
    Dedova IV; Dedov VN; Nosworthy NJ; Hambly BD; dos Remedios CG
    Biophys J; 2002 Jun; 82(6):3134-43. PubMed ID: 12023237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between polymerizability and conformation in scallop beta-like actin and rabbit skeletal muscle alpha-actin.
    Khaitlina S; Antropova O; Kuznetsova I; Turoverov K; Collins JH
    Arch Biochem Biophys; 1999 Aug; 368(1):105-11. PubMed ID: 10415117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method.
    Wagner O; Zinke J; Dancker P; Grill W; Bereiter-Hahn J
    Biophys J; 1999 May; 76(5):2784-96. PubMed ID: 10233094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-mobile water is induced around actin filaments.
    Kabir SR; Yokoyama K; Mihashi K; Kodama T; Suzuki M
    Biophys J; 2003 Nov; 85(5):3154-61. PubMed ID: 14581215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations.
    Nyitrai M; Hild G; Belágyi J; Somogyi B
    Biophys J; 1997 Oct; 73(4):2023-32. PubMed ID: 9336197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of actin-binding proteins on the thermal stability of monomeric actin.
    Pivovarova AV; Chebotareva NA; Kremneva EV; Lappalainen P; Levitsky DI
    Biochemistry; 2013 Jan; 52(1):152-60. PubMed ID: 23231323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FT-Raman studies on the transformation of G-actin to F-actin, the binding of cisplatin and transplatin to F-actin and the effects of the conformation of F-actin.
    Zeng HH; Xu ZH; Wang K
    Int J Biol Macromol; 1997 Apr; 20(2):107-13. PubMed ID: 9184942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidation produced by hydrogen peroxide on Ca-ATP-G-actin.
    Milzani A; Rossi R; Di Simplicio P; Giustarini D; Colombo R; DalleDonne I
    Protein Sci; 2000 Sep; 9(9):1774-82. PubMed ID: 11045622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength.
    Oda T; Makino K; Yamashita I; Namba K; Maéda Y
    Biophys J; 2001 Feb; 80(2):841-51. PubMed ID: 11159451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.
    Pivovarova AV; Khaitlina SY; Levitsky DI
    FEBS J; 2010 Sep; 277(18):3812-22. PubMed ID: 20718862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of interdomain motion in g-actin by the natural product latrunculin: a molecular dynamics study.
    Rennebaum S; Caflisch A
    Proteins; 2012 Aug; 80(8):1998-2008. PubMed ID: 22488806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ionic strength, actin state, and caldesmon construct size on the number of actin monomers in a caldesmon binding site.
    Fredricksen S; Cai A; Gafurov B; Resetar A; Chalovich JM
    Biochemistry; 2003 May; 42(20):6136-48. PubMed ID: 12755616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.