These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10354458)

  • 1. A new study of bacterial motion: superconducting quantum interference device microscopy of magnetotactic bacteria.
    Chemla YR; Grossman HL; Lee TS; Clarke J; Adamkiewicz M; Buchanan BB
    Biophys J; 1999 Jun; 76(6):3323-30. PubMed ID: 10354458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of bacteria in suspension by using a superconducting quantum interference device.
    Grossman HL; Myers WR; Vreeland VJ; Bruehl R; Alper MD; Bertozzi CR; Clarke J
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):129-34. PubMed ID: 14688406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.
    Smid P; Shcherbakov V; Petersen N
    Rev Sci Instrum; 2015 Sep; 86(9):095106. PubMed ID: 26429479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of magnetosomes in magnetotactic bacteria.
    Schüler D
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):79-86. PubMed ID: 10941788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
    Augustine MP; TonThat DM; Clarke J
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):139-56. PubMed ID: 9650797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of magnetotactic bacteria in a rotating magnetic field.
    Erglis K; Wen Q; Ose V; Zeltins A; Sharipo A; Janmey PA; Cēbers A
    Biophys J; 2007 Aug; 93(4):1402-12. PubMed ID: 17526564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superconducting Quantum Interferometers for Nondestructive Evaluation.
    Faley MI; Kostyurina EA; Kalashnikov KV; Maslennikov YV; Koshelets VP; Dunin-Borkowski RE
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misalignment between the magnetic dipole moment and the cell axis in the magnetotactic bacterium Magnetospirillum magneticum AMB-1.
    Le Nagard L; Yu L; Rajkotwala M; Barkley S; Bazylinski DA; Hitchcock AP; Fradin C
    Phys Biol; 2019 Sep; 16(6):066008. PubMed ID: 31181559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of endogenous magnetic nanoparticles with a tunnelling magneto resistance sensor.
    Ionescu A; Darton NJ; Vyas K; Llandro J
    Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1927):4371-87. PubMed ID: 20732892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the motion of magnetotactic bacteria: theoretical predictions and experimental observations.
    Acosta-Avalos D; Rodrigues E
    Eur Biophys J; 2019 Dec; 48(8):691-700. PubMed ID: 31511924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive magnetic biosensor for homogeneous immunoassay.
    Chemla YR; Grossman HL; Poon Y; McDermott R; Stevens R; Alper MD; Clarke J
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14268-72. PubMed ID: 11121032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical magnetic imaging of living cells.
    Le Sage D; Arai K; Glenn DR; DeVience SJ; Pham LM; Rahn-Lee L; Lukin MD; Yacoby A; Komeili A; Walsworth RL
    Nature; 2013 Apr; 496(7446):486-9. PubMed ID: 23619694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment.
    Kong D; Lin W; Pan Y; Zhang K
    Front Microbiol; 2014; 5():8. PubMed ID: 24523716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferromagnetic resonance of intact cells and isolated crystals from cultured and uncultured magnetite-producing magnetotactic bacteria.
    Abraçado LG; Wajnberg E; Esquivel DM; Keim CN; Silva KT; Moreira ET; Lins U; Farina M
    Phys Biol; 2014 Jun; 11(3):036006. PubMed ID: 24828297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields.
    Sepulchro AGV; de Barros HL; de Mota HOL; Berbereia KS; Huamani KPT; Lopes LCDS; Sudbrack V; Acosta-Avalos D
    Eur Biophys J; 2020 Oct; 49(7):609-617. PubMed ID: 33033886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. U-turn trajectories of magnetotactic cocci allow the study of the correlation between their magnetic moment, volume and velocity.
    Acosta-Avalos D; de Figueiredo AC; Conceição CP; da Silva JJP; Aguiar KJMSP; de Lima Medeiros M; do Nascimento M; de Melo RD; Sousa SMM; de Barros HL; Alves OC; Abreu F
    Eur Biophys J; 2019 Sep; 48(6):513-521. PubMed ID: 31203416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of magnetic properties of magnetotactic bacteria.
    Wajnberg E; de Souza LH; de Barros HG; Esquivel DM
    Biophys J; 1986 Sep; 50(3):451-5. PubMed ID: 19431685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-state NMR and scalar couplings in microtesla magnetic fields.
    McDermott R; Trabesinger AH; Muck M; Hahn EL; Pines A; Clarke J
    Science; 2002 Mar; 295(5563):2247-9. PubMed ID: 11910105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.