These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10354616)

  • 1. The interactions of adenylate cyclases with P-site inhibitors.
    Dessauer CW; Tesmer JJ; Sprang SR; Gilman AG
    Trends Pharmacol Sci; 1999 May; 20(5):205-10. PubMed ID: 10354616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of human soluble adenylate cyclase reveals a distinct, highly flexible allosteric bicarbonate binding pocket.
    Saalau-Bethell SM; Berdini V; Cleasby A; Congreve M; Coyle JE; Lock V; Murray CW; O'Brien MA; Rich SJ; Sambrook T; Vinkovic M; Yon JR; Jhoti H
    ChemMedChem; 2014 Apr; 9(4):823-32. PubMed ID: 24616449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen.
    Steegborn C; Litvin TN; Hess KC; Capper AB; Taussig R; Buck J; Levin LR; Wu H
    J Biol Chem; 2005 Sep; 280(36):31754-9. PubMed ID: 16002394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for P-site inhibition of adenylyl cyclase.
    Tesmer JJ; Dessauer CW; Sunahara RK; Murray LD; Johnson RA; Gilman AG; Sprang SR
    Biochemistry; 2000 Nov; 39(47):14464-71. PubMed ID: 11087399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity determinants of class III nucleotidyl cyclases.
    Bharambe NG; Barathy DV; Syed W; Visweswariah SS; Colaςo M; Misquith S; Suguna K
    FEBS J; 2016 Oct; 283(20):3723-3738. PubMed ID: 27542992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme.
    Tews I; Findeisen F; Sinning I; Schultz A; Schultz JE; Linder JU
    Science; 2005 May; 308(5724):1020-3. PubMed ID: 15890882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based development of novel adenylyl cyclase inhibitors.
    Schlicker C; Rauch A; Hess KC; Kachholz B; Levin LR; Buck J; Steegborn C
    J Med Chem; 2008 Aug; 51(15):4456-64. PubMed ID: 18630896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS.
    Tesmer JJ; Sunahara RK; Gilman AG; Sprang SR
    Science; 1997 Dec; 278(5345):1907-16. PubMed ID: 9417641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adenylyl and guanylyl cyclase superfamily.
    Hurley JH
    Curr Opin Struct Biol; 1998 Dec; 8(6):770-7. PubMed ID: 9914257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase.
    Winger JA; Derbyshire ER; Lamers MH; Marletta MA; Kuriyan J
    BMC Struct Biol; 2008 Oct; 8():42. PubMed ID: 18842118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-metal-Ion catalysis in adenylyl cyclase.
    Tesmer JJ; Sunahara RK; Johnson RA; Gosselin G; Gilman AG; Sprang SR
    Science; 1999 Jul; 285(5428):756-60. PubMed ID: 10427002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for inhibition of mammalian adenylyl cyclase by calcium.
    Mou TC; Masada N; Cooper DM; Sprang SR
    Biochemistry; 2009 Apr; 48(15):3387-97. PubMed ID: 19243146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation.
    Vercellino I; Rezabkova L; Olieric V; Polyhach Y; Weinert T; Kammerer RA; Jeschke G; Korkhov VM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9821-E9828. PubMed ID: 29087332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2',3'-o-(N-methylanthraniloyl)-inosine 5'-triphosphate.
    Hübner M; Dixit A; Mou TC; Lushington GH; Pinto C; Gille A; Geduhn J; König B; Sprang SR; Seifert R
    Mol Pharmacol; 2011 Jul; 80(1):87-96. PubMed ID: 21498658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conformational transition in the adenylyl cyclase catalytic site yields different binding modes for ribosyl-modified and unmodified nucleotide inhibitors.
    Wang JL; Guo JX; Zhang QY; Wu JJ; Seifert R; Lushington GH
    Bioorg Med Chem; 2007 Apr; 15(8):2993-3002. PubMed ID: 17329110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of the action of P-site analogs.
    Dessauer CW
    Methods Enzymol; 2002; 345():112-26. PubMed ID: 11665599
    [No Abstract]   [Full Text] [Related]  

  • 17. Mammalian Nucleotidyl Cyclases and Their Nucleotide Binding Sites.
    Dove S
    Handb Exp Pharmacol; 2017; 238():49-66. PubMed ID: 27900607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure, catalytic mechanism and regulation of adenylyl cyclase.
    Tesmer JJ; Sprang SR
    Curr Opin Struct Biol; 1998 Dec; 8(6):713-9. PubMed ID: 9914249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization.
    Shenoy AR; Srinivasan N; Subramaniam M; Visweswariah SS
    FEBS Lett; 2003 Jun; 545(2-3):253-9. PubMed ID: 12804785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic preparation of 32P-labeled beta-L-2',3',-dd-5'ATP and its use as a high-affinity, conformation-specific ligand for labeling adenylyl cyclases.
    Johnson RA; Shoshani I; Dessauer C; Gosselin G
    Nucleosides Nucleotides; 1999; 18(4-5):839-42. PubMed ID: 10432690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.