These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10355098)

  • 1. [Genetic techniques to overcome antitumor anergy].
    Dall P
    Zentralbl Gynakol; 1999; 121(4):198-201. PubMed ID: 10355098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape.
    Algarra I; García-Lora A; Cabrera T; Ruiz-Cabello F; Garrido F
    Cancer Immunol Immunother; 2004 Oct; 53(10):904-10. PubMed ID: 15069585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-host immune interactions and dendritic cell dysfunction.
    Yang L; Carbone DP
    Adv Cancer Res; 2004; 92():13-27. PubMed ID: 15530555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune selection in murine tumors. Ph.d thesis.
    Svane IM; Engel AM
    APMIS Suppl; 2003; (106):1-46. PubMed ID: 12739251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells.
    Poggi A; Zocchi MR
    Arch Immunol Ther Exp (Warsz); 2006; 54(5):323-33. PubMed ID: 17031467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHC class I down-regulation: tumour escape from immune surveillance? (review).
    Bubeník J
    Int J Oncol; 2004 Aug; 25(2):487-91. PubMed ID: 15254748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to cancer immunotherapy: tumor cells decorated with CD80 generate effective antitumor immunity.
    Singh NP; Yolcu ES; Taylor DD; Gercel-Taylor C; Metzinger DS; Dreisbach SK; Shirwan H
    Cancer Res; 2003 Jul; 63(14):4067-73. PubMed ID: 12874008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Immune tolerance and active suppression in oncology. Immunological principles and therapeutic options].
    Stremmel C; Klein P; Hohenberger W
    Chirurg; 2002 Mar; 73(3):255-61. PubMed ID: 11963500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Gene therapy of malignant tumors].
    Hauses M; Schackert HK
    Zentralbl Chir; 2000; 125 Suppl 1():41-6. PubMed ID: 10929646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning tumor cells in situ into T-helper cell-stimulating, MHC class II tumor epitope-presenters: immuno-curing and immuno-consolidation.
    Hillman GG; Kallinteris NL; Lu X; Wang Y; Wright JL; Li Y; Wu S; Forman JD; Gulfo JV; Humphreys RE; Xu M
    Cancer Treat Rev; 2004 May; 30(3):281-90. PubMed ID: 15059651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations.
    Aptsiauri N; Carretero R; Garcia-Lora A; Real LM; Cabrera T; Garrido F
    Cancer Immunol Immunother; 2008 Nov; 57(11):1727-33. PubMed ID: 18491093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forcing tumor cells to present their own tumor antigens to the immune system: a necessary design for an efficient tumor immunotherapy.
    Humphreys RE; Hillman GG; von Hofe E; Xu M
    Cell Mol Immunol; 2004 Jun; 1(3):180-5. PubMed ID: 16219165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression.
    Ahmad M; Rees RC; Ali SA
    Cancer Immunol Immunother; 2004 Oct; 53(10):844-54. PubMed ID: 15197495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of tumor immunosurveillance and implications for immunotherapy.
    Ochsenbein AF
    Cancer Gene Ther; 2002 Dec; 9(12):1043-55. PubMed ID: 12522443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models of efficient and inefficient anti-tumor immunity, with emphasis on minimal residual disease and tumor escape.
    Egorov IK
    Cancer Immunol Immunother; 2006 Jan; 55(1):1-22. PubMed ID: 16091932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted therapies to improve tumor immunotherapy.
    Begley J; Ribas A
    Clin Cancer Res; 2008 Jul; 14(14):4385-91. PubMed ID: 18628452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fas (Apo-1, CD95) receptor expression in childhood astrocytomas. Is it a marker of the major apoptotic pathway or a signaling receptor for immune escape of neoplastic cells?
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1999; 13(4):357-73. PubMed ID: 10586378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MHC class I antigens, immune surveillance, and tumor immune escape.
    Garcia-Lora A; Algarra I; Garrido F
    J Cell Physiol; 2003 Jun; 195(3):346-55. PubMed ID: 12704644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci.
    Kanwar JR; Kanwar RK; Pandey S; Ching LM; Krissansen GW
    Cancer Res; 2001 Mar; 61(5):1948-56. PubMed ID: 11280751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [MHC tetramers: tracking specific immunity].
    Kosor E; Gagro A; Drazenović V; Kuzman I; Jeren T; Rakusić S; Rabatić S; Markotić A; Gotovac K; Sabioncello A; Cecuk E; Kerhin-Brkljacić V; Gjenero-Margan I; Kaić B; Mlinarić-Galinović G; Kastelan A; Dekaris D
    Acta Med Croatica; 2003; 57(4):255-9. PubMed ID: 14639858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.