These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 10355700)
1. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. Lin SF; Roth BJ; Wikswo JP J Cardiovasc Electrophysiol; 1999 Apr; 10(4):574-86. PubMed ID: 10355700 [TBL] [Abstract][Full Text] [Related]
2. Virtual electrode polarization leads to reentry in the far field. Lindblom AE; Aguel F; Trayanova NA J Cardiovasc Electrophysiol; 2001 Aug; 12(8):946-56. PubMed ID: 11513448 [TBL] [Abstract][Full Text] [Related]
3. Simulation of protective zones during quatrefoil reentry in cardiac tissue. Hildebrandt MC; Roth BJ J Cardiovasc Electrophysiol; 2001 Sep; 12(9):1062-7. PubMed ID: 11573697 [TBL] [Abstract][Full Text] [Related]
4. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited. Lindblom AE; Roth BJ; Trayanova NA J Cardiovasc Electrophysiol; 2000 Mar; 11(3):274-85. PubMed ID: 10749350 [TBL] [Abstract][Full Text] [Related]
5. Effect of anisotropy on ventricular vulnerability to unidirectional block and reentry by single premature stimulation during normal sinus rhythm in rat heart. Rossi S; Buccarello A; Ershler PR; Lux RL; Callegari S; Corradi D; Carnevali L; Sgoifo A; Miragoli M; Musso E; Macchi E Am J Physiol Heart Circ Physiol; 2017 Mar; 312(3):H584-H607. PubMed ID: 28011584 [TBL] [Abstract][Full Text] [Related]
6. Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop. Johnson CR; Barr RC J Cardiovasc Electrophysiol; 2003 Oct; 14(10):1064-74. PubMed ID: 14521659 [TBL] [Abstract][Full Text] [Related]
7. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation. Evans FG; Gray RA J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078 [TBL] [Abstract][Full Text] [Related]
8. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. Roth BJ J Cardiovasc Electrophysiol; 1997 Jul; 8(7):768-78. PubMed ID: 9255684 [TBL] [Abstract][Full Text] [Related]
9. Importance of location and timing of electrical stimuli in terminating sustained functional reentry in isolated swine ventricular tissues: evidence in support of a small reentrant circuit. Kamjoo K; Uchida T; Ikeda T; Fishbein MC; Garfinkel A; Weiss JN; Karagueuzian HS; Chen PS Circulation; 1997 Sep; 96(6):2048-60. PubMed ID: 9323098 [TBL] [Abstract][Full Text] [Related]
10. Preferential depression of conduction around a pivot point in rabbit ventricular myocardium by potassium and flecainide. Danse PW; Garratt CJ; Mast F; Allessie MA J Cardiovasc Electrophysiol; 2000 Mar; 11(3):262-73. PubMed ID: 10749349 [TBL] [Abstract][Full Text] [Related]
12. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models. Colli Franzone P; Pavarino LF; Scacchi S Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963 [TBL] [Abstract][Full Text] [Related]
13. Effects of unipolar stimulation on voltage and calcium distributions in the isolated rabbit heart. Sidorov VY; Holcomb MR; Woods MC; Gray RA; Wikswo JP Basic Res Cardiol; 2008 Nov; 103(6):537-51. PubMed ID: 18642125 [TBL] [Abstract][Full Text] [Related]
14. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. Frazier DW; Wolf PD; Wharton JM; Tang AS; Smith WM; Ideker RE J Clin Invest; 1989 Mar; 83(3):1039-52. PubMed ID: 2921316 [TBL] [Abstract][Full Text] [Related]
15. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Bonometti C; Hwang C; Hough D; Lee JJ; Fishbein MC; Karagueuzian HS; Chen PS Circ Res; 1995 Aug; 77(2):407-16. PubMed ID: 7614724 [TBL] [Abstract][Full Text] [Related]
16. Role of wavelength adaptation in the initiation, maintenance, and pharmacologic suppression of reentry. Girouard SD; Rosenbaum DS J Cardiovasc Electrophysiol; 2001 Jun; 12(6):697-707. PubMed ID: 11405405 [TBL] [Abstract][Full Text] [Related]
17. Differential Responses of the Septal Ventricle and the Atrial Signals During Ongoing Entrainment: A Method to Differentiate Orthodromic Reciprocating Tachycardia Using Septal Accessory Pathways From Atypical Atrioventricular Nodal Reentry. Calvo D; Ávila P; García-Fernández FJ; Pachón M; Bravo L; Eidelman G; Hernández J; Miracle ÁL; Rubín J; Pérez D; Arenal Á; Atienza F; Jimenez-Candil J; Arias MÁ; Datino T; Martínez-Camblor P; Gonzalez-Torrecilla E; Almendral J Circ Arrhythm Electrophysiol; 2015 Oct; 8(5):1201-9. PubMed ID: 26334054 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of intercellular coupling stabilizes spiral-wave reentry, whereas enhancement of the coupling destabilizes the reentry in favor of early termination. Takemoto Y; Takanari H; Honjo H; Ueda N; Harada M; Kato S; Yamazaki M; Sakuma I; Opthof T; Kodama I; Kamiya K Am J Physiol Heart Circ Physiol; 2012 Sep; 303(5):H578-86. PubMed ID: 22707561 [TBL] [Abstract][Full Text] [Related]
19. Cathodal stimulation in the recovery phase of a propagating planar wave in the rabbit heart reveals four stimulation mechanisms. Sidorov VY; Woods MC; Baudenbacher F J Physiol; 2007 Aug; 583(Pt 1):237-50. PubMed ID: 17569727 [TBL] [Abstract][Full Text] [Related]