These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1035614)

  • 1. Nucleotide precursor in riboflavin biosynthesis.
    Mitsuda H; Nakajima K; Nadamoto T
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(6):477-80. PubMed ID: 1035614
    [No Abstract]   [Full Text] [Related]  

  • 2. The immediate nucleotide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway.
    Mitsuda H; Nakajima K; Nadamoto T
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(1):23-34. PubMed ID: 16103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanosine nucleotide precursor for flavinogenesis of Eremothecium Ashbyii.
    Mitsuda H; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1975; 21(5):331-45. PubMed ID: 6639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between accumulation of guanine ribonucleotidyl-(3'-5')-adenosine and formation of riboflavin.
    Mitsuda H; Nishikawa Y; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(5):403-12. PubMed ID: 146733
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation of guanine ribonucleotidyl-(3'-5')-adenosine in a flavinogenic strain of Eremothecium ashbyii.
    Mitsuda H; Nishikawa Y; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(2):115-33. PubMed ID: 182940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic formation of ribityl side chain of riboflavin from ribose moiety of nucleotide precursor in Eremothecium ashbyii.
    Nakajima K
    Int J Vitam Nutr Res; 1986; 56(1):73-8. PubMed ID: 3086248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic study of the immediate nucleotide precursor of riboflavin in whole cells of Eremothecium ashbyii at rest.
    Nakajima K; Nadamoto T; Mitsuda H
    Acta Vitaminol Enzymol; 1984; 6(3):189-99. PubMed ID: 6543097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibility of 2,4,5-triamino-6-hydroxypyrimidine as an intermediate in the pathway of riboflavin biosynthesis.
    Nakajima K; Yamada Y; Mitsuda H
    Acta Vitaminol Enzymol; 1985; 7(1-2):19-24. PubMed ID: 4041122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Product of second-stage riboflavin biosynthesis in Pichia guilliermondii].
    Logvinenko EM; ShavlovskiÄ­ GM; Zakal'skiÄ­ AE
    Mikrobiologiia; 1979; 48(4):756-8. PubMed ID: 481291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic constitution, ribitol formation & flavinogenesis in Eremothecium ashbyii.
    Madia AM; Mattoo AK; Modi VV; Amin GP
    Indian J Exp Biol; 1976 Nov; 14(6):680-3. PubMed ID: 1035903
    [No Abstract]   [Full Text] [Related]  

  • 11. 8-azaguanine and flavinogenesis in Eremothecium ashbyii.
    Madia AM; Mattoo AK; Modi VV
    Biochim Biophys Acta; 1975 Mar; 385(1):51-7. PubMed ID: 164925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuation of the nucleotide pools of flavinogenic and nonflavinogenic strains of Eremothecium ashbyii grown in the presence of purines.
    Mitsuda H; Suzuki Y; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1973; 19(1):29-42. PubMed ID: 4361435
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the intermediates in the biosynthetic pathway of riboflavin. I. Identification of a green fluorescent compound, compound G1, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl.
    Mitsuda H; Nakajima K; Yamada Y
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(4):305-18. PubMed ID: 562396
    [No Abstract]   [Full Text] [Related]  

  • 14. [Conversion of C8 of guanine to a l carbon unit during biosynthesis of riboflavin].
    Hayes DH; Greenberg GR
    Bull Soc Chim Biol (Paris); 1969 Dec; 51(7):1187-98. PubMed ID: 5361833
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of riboflavin in vitro. Isotopic incorporation studies in Pichia guilliermondii extracts.
    Miersch J
    Biochim Biophys Acta; 1980 Mar; 628(2):145-51. PubMed ID: 7357033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [On the physiology of growth and riboflavin overproduction of Eremothecium ashbyii. III. Investigations on the incorporation of radioactive labeled substrates in cell material and riboflavin (author's transl)].
    Straube G; Gerullis C; Blumenau R; Fritsche W
    Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):698-705. PubMed ID: 571185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Intermediary products of riboflavin biosynthesis].
    Bacher A
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):301-3. PubMed ID: 4145582
    [No Abstract]   [Full Text] [Related]  

  • 18. Biosynthesis of riboflavin. Incorporation of 13C-labeled precursors into the xylene ring.
    Bacher A; Le Van Q; Keller PJ; Floss HG
    J Biol Chem; 1983 Nov; 258(22):13431-7. PubMed ID: 6417129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii.
    Nakajima K; Mitsuda H
    Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine from a high flavinogenic mold Eremothecium ashbyii1.
    Mitsuda H; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(4):307-12. PubMed ID: 1034673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.