These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 1035614)
21. Relation between sugar metabolism and riboflavin formation in non-growing cells of Eremothecium ashbyii. Mitsuda H; Nakajima K; Nishikawa Y J Nutr Sci Vitaminol (Tokyo); 1978; 24(1):35-46. PubMed ID: 566310 [TBL] [Abstract][Full Text] [Related]
22. Mutants of Eremothecium ashbyii resistant to 8-azaguanine. Communication I. Isolation of mutants and study of the level of riboflavin biosynthesis. Stepanov AI; Beburov MY; Zhdanov VG Sov Genet; 1974 Jul; 8(6):729-33. PubMed ID: 4422635 [No Abstract] [Full Text] [Related]
23. [Detection of phosphorylated pyrimidine precursors of riboflavin in yeasts]. Logvinenko EM; Shavlovskiĭ GM; Zakal'skiĭ AE; Seniuta EZ Biokhimiia; 1980 Jul; 45(7):1284-92. PubMed ID: 7213861 [TBL] [Abstract][Full Text] [Related]
24. Studies on the 4-carbon compound needed for the formation of the O-xylene ring of riboflavin. Nakajima K Acta Vitaminol Enzymol; 1985; 7(1-2):25-37. PubMed ID: 4041123 [TBL] [Abstract][Full Text] [Related]
26. The relation between purine metabolism and flavinogenesis in Eremothecium ashbyii. The identification of S-adenosylmethionine and S-adenosylhomocysteine accumulated in non-growing cells of E. ashbyii. Mitsuda H; Nadamoto T; Nakajima K J Nutr Sci Vitaminol (Tokyo); 1977; 23(2):71-9. PubMed ID: 559727 [TBL] [Abstract][Full Text] [Related]
27. The use of mutagenic factors in the selection of the riboflavin producer Eremothecium ashbyii. Stepanov AI; Zhdanov VG Sov Genet; 1974 Jul; 8(6):745-9. PubMed ID: 4425263 [No Abstract] [Full Text] [Related]
28. [On the physiology of growth and riboflavin overproduction of Eremothecium ashbyii. I. The influence of chemical and physical factors (author's transl)]. Straube G; Hanschke G; Fritsche W Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 129(8):675-84. PubMed ID: 1173710 [No Abstract] [Full Text] [Related]
29. Purine metabolism in Neisseria meningitidis. 3. Utilization of exogenous hypoxanthine, guanine and xanthine. Jyssum S Acta Pathol Microbiol Scand B; 1975 Oct; 83(5):397-406. PubMed ID: 809993 [TBL] [Abstract][Full Text] [Related]
30. [Eremothecium ashbyii mutants resistant to 8-azaguanine. II. Mutants with different degrees of resistance to 8-azaguanine]. Beburov MIu; Stepanov AI; Rozenfel'd SM; Zhdanov VG Genetika; 1975; 11(6):95-104. PubMed ID: 1240815 [TBL] [Abstract][Full Text] [Related]
31. [On the physiology of growth and riboflavin overproduction of Eremothecium ashbyii. II. The influence of inhibitors (author's transl)]. Straube G; Toros SI; Fritsche W Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 129(8):685-90. PubMed ID: 1173711 [No Abstract] [Full Text] [Related]
32. Effects of various metabolites (sugars, carboxylic acids and alcohols) on riboflavin formation in non-growing cells of Ashbya gossypii. Mitsuda H; Nakajima K; Ikeda Y J Nutr Sci Vitaminol (Tokyo); 1978; 24(2):91-103. PubMed ID: 27596 [TBL] [Abstract][Full Text] [Related]
33. Effects of 8-azaguanine on riboflavin production and on the nucleotide pools in non-growing cells of Eremothecium ashbyii. Mitsuda H; Nakajima K J Nutr Sci Vitaminol (Tokyo); 1973; 19(3):215-27. PubMed ID: 4752098 [No Abstract] [Full Text] [Related]
34. Origin of guanine nucleotides in isolated heart mitochondria. McKee EE; Bentley AT; Smith RM; Ciaccio CE Biochem Biophys Res Commun; 1999 Apr; 257(2):466-72. PubMed ID: 10198236 [TBL] [Abstract][Full Text] [Related]
35. Biosynthesis of riboflavin: reductase and deaminase of Ashbya gossypii. Hollander I; Brown GM Biochem Biophys Res Commun; 1979 Jul; 89(2):759-63. PubMed ID: 39563 [No Abstract] [Full Text] [Related]
36. Subcellular compartmentation of guanine nucleotides and functional relationships between the adenine and guanine nucleotide systems in isolated hepatocytes. Kleineke J; Düls C; Söling HD FEBS Lett; 1979 Nov; 107(1):198-202. PubMed ID: 499541 [No Abstract] [Full Text] [Related]
37. 31P NMR study of the guanine nucleotide binding of elongation factor Tu from Thermus thermophilus. Nakano A; Miyazawa T; Nakamura S; Kaziro Y FEBS Lett; 1980 Jul; 116(1):72-4. PubMed ID: 7409137 [No Abstract] [Full Text] [Related]
38. The interaction of elongation factor 2 with ribosomes from silk gland. Formation of an EF-2-ribosome-GDP complex. Taira H; Ejiri S; Shimura K J Biochem; 1974 Nov; 76(5):949-57. PubMed ID: 4616032 [No Abstract] [Full Text] [Related]
39. Detection of guanosine-nucleotide.elongation-factor-G complexes produced during the decay of guanosine-nucleotide.elongation-factor-G.Ribosome complexes. Girbes T; Vázquez D; Modolell J Eur J Biochem; 1977 Dec; 81(3):473-81. PubMed ID: 340226 [No Abstract] [Full Text] [Related]
40. Biosynthesis of the phosphodiester bond in coenzyme F(420) in the methanoarchaea. Graupner M; White RH Biochemistry; 2001 Sep; 40(36):10859-72. PubMed ID: 11535063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]