These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1035614)

  • 41. Examination of the structure of an unknown green fluorescent compound, compound G2, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl.
    Mitsuda H; Nakajima K; Yamada Y
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(5):413-22. PubMed ID: 564400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.
    Menezes CB; Durgante J; de Oliveira RR; Dos Santos VH; Rodrigues LF; Garcia SC; Dos Santos O; Tasca T
    Mol Biochem Parasitol; 2016 May; 207(1):10-8. PubMed ID: 27150347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of guanine nucleotides in translational control by protein phosphorylation.
    Siekierka J; Mariano TM; Ochoa S; Reichel P; Mathews MB
    Biochem Soc Trans; 1985 Aug; 13(4):671-3. PubMed ID: 3849454
    [No Abstract]   [Full Text] [Related]  

  • 44. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts.
    Fasano O; Bruns W; Crechet JB; Sander G; Parmeggiani A
    Eur J Biochem; 1978 Sep; 89(2):557-65. PubMed ID: 251130
    [No Abstract]   [Full Text] [Related]  

  • 45. Precursor-product relationships between nucleotides and RNA during differentiation in Dictyostelium discoideum.
    Rutherford CL; Kong WY; Park D; Wright BE
    J Gen Microbiol; 1974 Sep; 84(1):173-87. PubMed ID: 4474352
    [No Abstract]   [Full Text] [Related]  

  • 46. Reutilization of by-product for riboflavin formation in the riboflavin synthetase reaction.
    Mitsuda H; Nadamoto T; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(1):67-70. PubMed ID: 986426
    [No Abstract]   [Full Text] [Related]  

  • 47. Guanine nucleotide concentrations in vivo in outer segments of dark and light adapted frog retina.
    de Azeredo FA; Lust WD; Passonneau JV
    Biochem Biophys Res Commun; 1978 Nov; 85(1):293-300. PubMed ID: 217375
    [No Abstract]   [Full Text] [Related]  

  • 48. Biosynthesis of riboflavin by Ashbya gossypii. I. The influence of fats of the animal origin on the riboflavin production.
    Szcześniak T; Karabin L; Szczepankowska M; Wituch K
    Acta Microbiol Pol B; 1971; 3(1):29-34. PubMed ID: 5103479
    [No Abstract]   [Full Text] [Related]  

  • 49. Biosynthesis of riboflavin. Structure of the purine precursor and origin of the ribityl side chain.
    Mailänder B; Bacher A
    J Biol Chem; 1976 Jun; 251(12):3623-8. PubMed ID: 776973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of Ras-bound guanine nucleotide in stimulated hematopoietic cells.
    Satoh T; Kaziro Y
    Methods Enzymol; 1995; 255():149-55. PubMed ID: 8524098
    [No Abstract]   [Full Text] [Related]  

  • 51. Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils.
    Nasmith PE; Mills GB; Grinstein S
    Biochem J; 1989 Feb; 257(3):893-7. PubMed ID: 2930492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Flavinogenesis and regulation of purine biosynthesis de novo in Pichia guilliermondi mutants resiatant to 8-azaguanine].
    Shavlovskiĭ GM; Kuznetsova RA
    Genetika; 1975; 11(5):110-8. PubMed ID: 1218707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tryptophan fluorescence of G proteins: analysis of guanine nucleotide binding and hydrolysis.
    Higashijima T; Ferguson KM
    Methods Enzymol; 1991; 195():321-8. PubMed ID: 1903495
    [No Abstract]   [Full Text] [Related]  

  • 54. Biosynthesis of riboflavin: mechanism of formation of the ribitylamino linkage.
    Keller PJ; Le Van Q; Kim SU; Bown DH; Chen HC; Kohnle A; Bacher A; Floss HG
    Biochemistry; 1988 Feb; 27(4):1117-20. PubMed ID: 3130093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Further studies on the interaction of the polypeptide chain elongation factor G with guanine nucleotides.
    Arai N; Arai K; Kaziro Y
    J Biochem; 1977 Sep; 82(3):687-94. PubMed ID: 914807
    [No Abstract]   [Full Text] [Related]  

  • 56. Biosynthesis of riboflavin by Eremothecium ashbyii. IX. Growth and riboflavin formation and their relation to the utilization and assimilation of the constituents of the liquid culture media.
    Osman HG; Chenouda MS
    Can J Microbiol; 1965 Aug; 11(4):625-8. PubMed ID: 5861283
    [No Abstract]   [Full Text] [Related]  

  • 57. Guanine nucleotides and their significance in biochemical processes.
    Pogson TC
    Am J Clin Nutr; 1974 Apr; 27(4):380-402. PubMed ID: 4361701
    [No Abstract]   [Full Text] [Related]  

  • 58. Ca2+-guanine nucleotide interactions in brain membranes. II. Characteristics of [3H]guanosine triphosphate and [3H] beta, gamma-imidoguanosine 5'-triphosphate binding and catabolism in the rat hippocampus and striatum.
    Hamon M; Mallat M; El Mestikawy S; Pasquier A
    J Neurochem; 1982 Jan; 38(1):162-72. PubMed ID: 7108525
    [No Abstract]   [Full Text] [Related]  

  • 59. Biosynthesis of deuterated riboflavin: structure determination by NMR and mass spectrometry.
    Pluta PL; Crespi HL; Klein M; Blake MI; Studier MH; Katz JJ
    J Pharm Sci; 1976 Mar; 65(3):362-6. PubMed ID: 944259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A 1H NMR study of the Escherichia coli elongation-factor Tu with guanine nucleotides and the antibiotic kirromycin.
    Römer R; Block W; Pingoud A; Wolf H
    FEBS Lett; 1981 Apr; 126(2):161-4. PubMed ID: 7016585
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.