These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10356265)

  • 1. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane fouling by cell-protein mixtures: in situ characterisation using multi-photon microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Biotechnol Bioeng; 2007 Apr; 96(6):1083-91. PubMed ID: 16933334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system.
    Lee SS; Burt A; Russotti G; Buckland B
    Biotechnol Bioeng; 1995 Nov; 48(4):386-400. PubMed ID: 18623499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossflow microfiltration of yeast suspensions in tubular filters.
    Redkar SG; Davis RH
    Biotechnol Prog; 1993; 9(6):625-34. PubMed ID: 7764351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid coatings for the prevention of membrane fouling.
    Reuben BG; Perl O; Morgan NL; Stratford P; Dudley LY; Hawes C
    J Chem Technol Biotechnol; 1995 May; 63(1):85-91. PubMed ID: 7766404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration.
    Venkiteshwaran A; Heider P; Teysseyre L; Belfort G
    Biotechnol Bioeng; 2008 Dec; 101(5):957-66. PubMed ID: 18553503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced filtration using flat membranes and standing vortex waves.
    Bellhouse BJ; Sobey IJ; Alani S; DeBlois BM
    Bioseparation; 1994 Apr; 4(2):127-38. PubMed ID: 7765040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intermolecular thiol-disulfide interchange reactions on bsa fouling during microfiltration.
    Kelly ST; Zydney AL
    Biotechnol Bioeng; 1994 Oct; 44(8):972-82. PubMed ID: 18618916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfiltration of yeast suspensions with self-cleaning spiral vortices: possibilities for a new membrane module design.
    Mallubhotla H; Nunes E; Belfort G
    Biotechnol Bioeng; 1995 Nov; 48(4):375-85. PubMed ID: 18623498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of membrane morphology on system capacity during normal flow microfiltration.
    Zydney AL; Ho CC
    Biotechnol Bioeng; 2003 Sep; 83(5):537-43. PubMed ID: 12827695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.
    Wang YN; Tang CY
    Environ Sci Technol; 2011 Aug; 45(15):6373-9. PubMed ID: 21678956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ three-dimensional characterization of membrane fouling by protein suspensions using multiphoton microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Langmuir; 2006 Jul; 22(14):6266-72. PubMed ID: 16800685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the Permeate Flux during Microfiltration of BSA-Adsorbed Microspheres in a Stirred Cell.
    Choi SW; Yoon JY; Haam S; Jung JK; Kim JH; Kim WS
    J Colloid Interface Sci; 2000 Aug; 228(2):270-278. PubMed ID: 10926466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions.
    Gehlert G; Luque S; Belfort G
    Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration.
    Palacio L; Ho CC; Zydney AL
    Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme recovery during gas/liquid two-phase flow microfiltration of enzyme/yeast mixtures.
    Mercier-Bonin M; Fonade C
    Biotechnol Bioeng; 2002 Dec; 80(6):610-21. PubMed ID: 12378602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of membrane fouling by protein mixtures using MALDI-MS.
    Chan R; Chen V; Bucknall MP
    Biotechnol Bioeng; 2004 Jan; 85(2):190-201. PubMed ID: 14705002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of membrane type and material on performance of a submerged membrane bioreactor.
    Choi JH; Ng HY
    Chemosphere; 2008 Mar; 71(5):853-9. PubMed ID: 18164743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.