These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 10356283)

  • 21. Critical role of the residue size at position 87 in H2O2- dependent substrate hydroxylation activity and H2O2 inactivation of cytochrome P450BM-3.
    Li QS; Ogawa J; Shimizu S
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1258-61. PubMed ID: 11162663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase.
    Neeli R; Girvan HM; Lawrence A; Warren MJ; Leys D; Scrutton NS; Munro AW
    FEBS Lett; 2005 Oct; 579(25):5582-8. PubMed ID: 16214136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids.
    Cryle MJ; Matovic NJ; De Voss JJ
    Org Lett; 2003 Sep; 5(18):3341-4. PubMed ID: 12943422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox control of the catalytic cycle of flavocytochrome P-450 BM3.
    Daff SN; Chapman SK; Turner KL; Holt RA; Govindaraj S; Poulos TL; Munro AW
    Biochemistry; 1997 Nov; 36(45):13816-23. PubMed ID: 9374858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.
    Sowden RJ; Yasmin S; Rees NH; Bell SG; Wong LL
    Org Biomol Chem; 2005 Jan; 3(1):57-64. PubMed ID: 15602599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural determinants of active site binding affinity and metabolism by cytochrome P450 BM-3.
    Cowart LA; Falck JR; Capdevila JH
    Arch Biochem Biophys; 2001 Mar; 387(1):117-24. PubMed ID: 11368173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3.
    Govindaraj S; Poulos TL
    Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions.
    Dietrich M; Do TA; Schmid RD; Pleiss J; Urlacher VB
    J Biotechnol; 2009 Jan; 139(1):115-7. PubMed ID: 18984016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active site structure and substrate specificity of cytochrome P450 4A1: steric control of ligand approach perpendicular to heme plane.
    Bambal RB; Hanzlik RP
    Biochem Biophys Res Commun; 1996 Feb; 219(2):445-9. PubMed ID: 8605007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereoselective hydroxylation of an achiral cyclopentanecarboxylic acid derivative using engineered P450s BM-3.
    Münzer DF; Meinhold P; Peters MW; Feichtenhofer S; Griengl H; Arnold FH; Glieder A; de Raadt A
    Chem Commun (Camb); 2005 May; (20):2597-9. PubMed ID: 15900339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acid monooxygenation by cytochrome P-450BM-3.
    Boddupalli SS; Estabrook RW; Peterson JA
    J Biol Chem; 1990 Mar; 265(8):4233-9. PubMed ID: 2407733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational dynamics in cytochrome P450-substrate interactions.
    Li H; Poulos TL
    Biochimie; 1996; 78(8-9):695-9. PubMed ID: 9010597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid.
    Li H; Poulos TL
    Nat Struct Biol; 1997 Feb; 4(2):140-6. PubMed ID: 9033595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer.
    Kaspera R; Sahele T; Lakatos K; Totah RA
    Biochem Biophys Res Commun; 2012 Feb; 418(3):464-8. PubMed ID: 22281497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclopropyl fatty acids implicate a radical but not a cation as an intermediate in P450BM3-catalysed hydroxylations.
    Cryle MJ; Stuthe JM; Ortiz de Montellano PR; De Voss JJ
    Chem Commun (Camb); 2004 Mar; (5):512-3. PubMed ID: 14973583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen activation and electron transfer in flavocytochrome P450 BM3.
    Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S
    J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger.
    Faber BW; van Gorcom RF; Duine JA
    Arch Biochem Biophys; 2001 Oct; 394(2):245-54. PubMed ID: 11594739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations of P450 BM3--examination of substrate-induced conformational change.
    Chang YT; Loew GH
    J Biomol Struct Dyn; 1999 Jun; 16(6):1189-203. PubMed ID: 10447203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical residues involved in FMN binding and catalytic activity in cytochrome P450BM-3.
    Klein ML; Fulco AJ
    J Biol Chem; 1993 Apr; 268(10):7553-61. PubMed ID: 8463285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.