BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10356345)

  • 1. Using hippocampal slices to study how aging alters ion regulation in brain tissue.
    Roberts EL
    Methods; 1999 Jun; 18(2):150-9. PubMed ID: 10356345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of age of pH regulation in hippocampal slices before, during, and after anoxia.
    Roberts EL; Chih CP
    J Cereb Blood Flow Metab; 1997 May; 17(5):560-6. PubMed ID: 9183294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of intracellular pH using flow cytometry with carboxy-SNARF-1.
    Wieder ED; Hang H; Fox MH
    Cytometry; 1993 Nov; 14(8):916-21. PubMed ID: 8287734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging impairs regulation of intracellular pH in rat hippocampal slices.
    Roberts EL; Sick TJ
    Brain Res; 1996 Oct; 735(2):339-42. PubMed ID: 8911676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence imaging of changes in intracellular chloride in living brain slices.
    Inglefield JR; Schwartz-Bloom RD
    Methods; 1999 Jun; 18(2):197-203. PubMed ID: 10356351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivation of hippocampal ensemble activity patterns in the aging rat.
    Gerrard JL; Kudrimoti H; McNaughton BL; Barnes CA
    Behav Neurosci; 2001 Dec; 115(6):1180-92. PubMed ID: 11770050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of age on the clearance of K+ from the extracellular space of rat hippocampal slices.
    Roberts EL; Feng ZC
    Brain Res; 1996 Feb; 708(1-2):16-20. PubMed ID: 8720854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes.
    Jahnsen H; Kristensen BW; Thiébaud P; Noraberg J; Jakobsen B; Bove M; Martinoia S; Koudelka-Hep M; Grattarola M; Zimmer J
    Methods; 1999 Jun; 18(2):160-72. PubMed ID: 10356346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording.
    Fedirko N; Svichar N; Chesler M
    J Neurophysiol; 2006 Aug; 96(2):919-24. PubMed ID: 16672303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors.
    Klauke N; Monaghan P; Sinclair G; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):788-93. PubMed ID: 16738732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pH buffering capacity of hippocampal slices from young adult and aged rats.
    Roberts EL; Chih CP
    Brain Res; 1998 Jan; 779(1-2):271-5. PubMed ID: 9473691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia.
    Wang J; Lei B; Popp S; Meng F; Cottrell JE; Kass IS
    Neuroscience; 2007 Mar; 145(3):1097-107. PubMed ID: 17291693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of pH by microfluorometry: intracellular and interstitial pH regulation in developing early-stage fish embryos (Danio rerio).
    Mölich A; Heisler N
    J Exp Biol; 2005 Nov; 208(Pt 21):4137-49. PubMed ID: 16244172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.
    Dolz M; O'Connor JE; Lequerica JL
    Cytometry A; 2004 Oct; 61(2):99-104. PubMed ID: 15382148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of intrinsic optical signals and calcein fluorescence during acute excitotoxic insult in the hippocampal slice.
    Jarvis CR; Lilge L; Vipond GJ; Andrew RD
    Neuroimage; 1999 Oct; 10(4):357-72. PubMed ID: 10493895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous analysis of intracellular pH and Ca2+ from cell populations.
    Martinez-Zaguilan R; Tompkins LS; Gillies RJ; Lynch RM
    Methods Mol Biol; 2006; 312():269-87. PubMed ID: 16422205
    [No Abstract]   [Full Text] [Related]  

  • 17. Hippocampal map realignment and spatial learning.
    Rosenzweig ES; Redish AD; McNaughton BL; Barnes CA
    Nat Neurosci; 2003 Jun; 6(6):609-15. PubMed ID: 12717437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of spatial firing in the hippocampus of young rats.
    Martin PD; Berthoz A
    Hippocampus; 2002; 12(4):465-80. PubMed ID: 12201631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells.
    Buckler KJ; Vaughan-Jones RD
    Pflugers Arch; 1990 Oct; 417(2):234-9. PubMed ID: 2084617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A newly designed cell-permeable SNARF derivative as an effective intracellular pH indicator.
    Nakata E; Yukimachi Y; Nazumi Y; Uto Y; Maezawa H; Hashimoto T; Okamoto Y; Hori H
    Chem Commun (Camb); 2010 May; 46(20):3526-8. PubMed ID: 20379600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.