These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 10356389)
1. Enhanced reactivity of highly vibrationally excited molecules on metal surfaces. Hou H; Huang Y; Gulding SJ; Rettner CT; Auerbach DJ; Wodtke AM Science; 1999 Jun; 284(5420):1647-50. PubMed ID: 10356389 [TBL] [Abstract][Full Text] [Related]
2. Vibrational Inelasticity of Highly Vibrationally Excited NO on Ag(111). Krüger BC; Meyer S; Kandratsenka A; Wodtke AM; Schäfer T J Phys Chem Lett; 2016 Feb; 7(3):441-6. PubMed ID: 26760437 [TBL] [Abstract][Full Text] [Related]
3. Ultracold collisions and reactions of vibrationally excited OH radicals with oxygen atoms. Juanes-Marcos JC; Quéméner G; Kendrick BK; Balakrishnan N Phys Chem Chem Phys; 2011 Nov; 13(42):19067-76. PubMed ID: 21674116 [TBL] [Abstract][Full Text] [Related]
4. State-to-state reaction probabilities for the H+O2(v,j)-->O+OH(v',j') reaction on three potential energy surfaces. Hankel M; Smith SC; Meijer AJ J Chem Phys; 2007 Aug; 127(6):064316. PubMed ID: 17705605 [TBL] [Abstract][Full Text] [Related]
5. Vibrationally promoted electron emission from low work-function metal surfaces. White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM J Chem Phys; 2006 Feb; 124(6):64702. PubMed ID: 16483224 [TBL] [Abstract][Full Text] [Related]
6. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2]. Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275 [TBL] [Abstract][Full Text] [Related]
7. State-to-state scattering of D2 from Cu(100) and Pd(111). Shackman LC; Sitz GO J Chem Phys; 2005 Aug; 123(6):64712. PubMed ID: 16122340 [TBL] [Abstract][Full Text] [Related]
8. Dissociative chemisorption of H2 on the Cu(110) surface: a quantum and quasiclassical dynamical study. Kroes GJ; Pijper E; Salin A J Chem Phys; 2007 Oct; 127(16):164722. PubMed ID: 17979386 [TBL] [Abstract][Full Text] [Related]
9. [Vibration-vibration energy transfer between highly vibrational excited RbH and H2, N2]. Zhang B; Zhu DH; Dai K; Shen YF Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):590-3. PubMed ID: 22582611 [TBL] [Abstract][Full Text] [Related]
10. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence. Liu CL; Hsu HC; Hsu YC; Ni CK J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751 [TBL] [Abstract][Full Text] [Related]
11. Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl(v=2,J=1) scattering from Au(111). Rahinov I; Cooper R; Yuan C; Yang X; Auerbach DJ; Wodtke AM J Chem Phys; 2008 Dec; 129(21):214708. PubMed ID: 19063576 [TBL] [Abstract][Full Text] [Related]
12. State-to-state scattering of highly vibrationally excited NO at broadly tunable energies. Amarasinghe C; Li H; Perera CA; Besemer M; Zuo J; Xie C; van der Avoird A; Groenenboom GC; Guo H; Kłos J; Suits AG Nat Chem; 2020 Jun; 12(6):528-534. PubMed ID: 32393824 [TBL] [Abstract][Full Text] [Related]
13. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface. Shirhatti PR; Rahinov I; Golibrzuch K; Werdecker J; Geweke J; Altschäffel J; Kumar S; Auerbach DJ; Bartels C; Wodtke AM Nat Chem; 2018 Jun; 10(6):592-598. PubMed ID: 29483637 [TBL] [Abstract][Full Text] [Related]
14. Quasiclassical trajectory study of the vibrational quenching of hydroxyl radicals through collision with O atoms. Viswanathan R; Dolgos M; Hinde RJ J Phys Chem A; 2007 Feb; 111(5):783-92. PubMed ID: 17266218 [TBL] [Abstract][Full Text] [Related]
15. A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions. Pajón-Suárez P; Rubayo-Soneira J; Hernández-Lamoneda R J Phys Chem A; 2011 Apr; 115(13):2892-9. PubMed ID: 21410176 [TBL] [Abstract][Full Text] [Related]
16. Chemical reaction versus vibrational quenching in low energy collisions of vibrationally excited OH with O. Pradhan GB; Juanes-Marcos JC; Balakrishnan N; Kendrick BK J Chem Phys; 2013 Nov; 139(19):194305. PubMed ID: 24320324 [TBL] [Abstract][Full Text] [Related]
17. Stochastic wave packet approach to nonadiabatic scattering of diatomic molecules from metals. Serwatka T; Tremblay JC J Chem Phys; 2019 May; 150(18):184105. PubMed ID: 31091890 [TBL] [Abstract][Full Text] [Related]
18. Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32,700 and 37,900 cm(-1)) relaxation. Du J; Sassin NA; Havey DK; Hsu K; Mullin AS J Phys Chem A; 2013 Nov; 117(46):12104-15. PubMed ID: 24063656 [TBL] [Abstract][Full Text] [Related]
19. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864 [TBL] [Abstract][Full Text] [Related]
20. State-selected dynamics of the complex-forming bimolecular reaction Cl- +CH3 Cl'-->ClCH3+Cl'-: a four-dimensional quantum scattering study. Hennig C; Schmatz S J Chem Phys; 2004 Jul; 121(1):220-36. PubMed ID: 15260540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]