BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10356679)

  • 1. A new method for the automatic mesh generation of bone segments from CT data.
    Viceconti M; Zannoni C; Testi D; Cappello A
    J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur.
    Polgar K; Viceconti M; O'Connor JJ
    Proc Inst Mech Eng H; 2001; 215(1):85-94. PubMed ID: 11323989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures.
    Couteau B; Payan Y; Lavallée S
    J Biomech; 2000 Aug; 33(8):1005-9. PubMed ID: 10828331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
    Zachariah SG; Sanders JE; Turkiyyah GM
    IEEE Trans Rehabil Eng; 1996 Jun; 4(2):91-102. PubMed ID: 8798076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis.
    Chandran V; Maquer G; Gerig T; Zysset P; Reyes M
    Med Image Anal; 2019 Feb; 52():42-55. PubMed ID: 30471462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can CT image deblurring improve finite element predictions at the proximal femur?
    Falcinelli C; Schileo E; Pakdel A; Whyne C; Cristofolini L; Taddei F
    J Mech Behav Biomed Mater; 2016 Oct; 63():337-351. PubMed ID: 27450036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans.
    Almeida DF; Ruben RB; Folgado J; Fernandes PR; Audenaert E; Verhegghe B; De Beule M
    Med Eng Phys; 2016 Dec; 38(12):1474-1480. PubMed ID: 27751655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fast automated finite element mesh generation of residual lower limb for clinical application].
    Jiang WT; Fan YB; Pu F; Zhang M; Zheng YP; Chen JK
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):286-90. PubMed ID: 12425337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.