These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10356679)

  • 21. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.
    Dai Y; Niebur GL
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):599-606. PubMed ID: 19308870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smooth surface meshing for automated finite element model generation from 3D image data.
    Boyd SK; Müller R
    J Biomech; 2006; 39(7):1287-95. PubMed ID: 15922348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From high-resolution CT data to finite element models: development of an integrated modular framework.
    Pahr DH; Zysset PK
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):45-57. PubMed ID: 18839383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic generation of finite element meshes from computed tomography data.
    Viceconti M; Taddei F
    Crit Rev Biomed Eng; 2003; 31(1-2):27-72. PubMed ID: 14964351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures.
    Nguyen L; Stoter S; Baum T; Kirschke J; Ruess M; Yosibash Z; Schillinger D
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28294574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer aided stress analysis of long bones utilizing computed tomography.
    Marom SA; Linden MJ
    J Biomech; 1990; 23(5):399-404. PubMed ID: 2373712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase.
    Camacho DL; Hopper RH; Lin GM; Myers BS
    J Biomech; 1997 Oct; 30(10):1067-70. PubMed ID: 9391875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic segmentation of rotational x-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures.
    Manzke R; Meyer C; Ecabert O; Peters J; Noordhoek NJ; Thiagalingam A; Reddy VY; Chan RC; Weese J
    IEEE Trans Med Imaging; 2010 Feb; 29(2):260-72. PubMed ID: 20129843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive mesh refinement for elastic modulus reconstruction in elastography.
    Wang W; Zou W; Hu D; Wang J
    Proc Inst Mech Eng H; 2018 Mar; 232(3):215-229. PubMed ID: 29316849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study.
    Pandey P; Guy P; Hodgson AJ; Abugharbieh R
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1515-1524. PubMed ID: 29804181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-quality mesh generation for human hip based on ideal element size: methods and evaluation.
    Wang M; Gao J; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2D and 3D finite element pre- and post-processing in orthopaedy.
    Krejci R; Bartos M; Dvorăk J; Nedoma J; Stehlik J
    Int J Med Inform; 1997 Jun; 45(1-2):83-9. PubMed ID: 9291023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate Pelvis and Femur Segmentation in Hip CT With a Novel Patch-Based Refinement.
    Chang Y; Yuan Y; Guo C; Wang Y; Cheng Y; Tamura S
    IEEE J Biomed Health Inform; 2019 May; 23(3):1192-1204. PubMed ID: 29993902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images.
    Pakdel A; Robert N; Fialkov J; Maloul A; Whyne C
    Phys Med Biol; 2012 Dec; 57(23):8099-116. PubMed ID: 23159920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques.
    Ulrich D; van Rietbergen B; Weinans H; Rüegsegger P
    J Biomech; 1998 Dec; 31(12):1187-92. PubMed ID: 9882053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy assessment of CT-based outer surface femur meshes.
    Gelaude F; Vander Sloten J; Lauwers B
    Comput Aided Surg; 2008 Jul; 13(4):188-99. PubMed ID: 18622793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.
    Vonach M; Marson B; Yun M; Cardoso J; Modat M; Ourselin S; Holder D
    Physiol Meas; 2012 May; 33(5):801-16. PubMed ID: 22531116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases.
    Bucki M; Lobos C; Payan Y
    Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.