These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10357141)

  • 21. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic studies of a multiphasic polymer-ceramic mixture material.
    Nguyen TP; Dupraz A
    J Biomater Sci Polym Ed; 1996; 8(2):141-9. PubMed ID: 8957710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth.
    Gauthier O; Bouler JM; Aguado E; Pilet P; Daculsi G
    Biomaterials; 1998; 19(1-3):133-9. PubMed ID: 9678860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.
    Galois L; Mainard D
    Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.
    He F; Ren W; Tian X; Liu W; Wu S; Chen X
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():117-123. PubMed ID: 27127035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes.
    Bohner M; Baumgart F
    Biomaterials; 2004 Aug; 25(17):3569-82. PubMed ID: 15020131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Micro-particles of bioceramics could cause cell and tissue damage].
    Lu J; Tang T; Ding H; Dai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):85-9. PubMed ID: 16532817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels.
    Daculsi G; Uzel AP; Weiss P; Goyenvalle E; Aguado E
    J Mater Sci Mater Med; 2010 Mar; 21(3):855-61. PubMed ID: 19882306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model.
    Fellah BH; Gauthier O; Weiss P; Chappard D; Layrolle P
    Biomaterials; 2008 Mar; 29(9):1177-88. PubMed ID: 18093645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating Withania somnifera extracts.
    Qayoom I; Teotia AK; Meena M; Singh P; Mishra A; Singh S; Kumar A
    Biomed Mater; 2020 Jul; 15(5):055015. PubMed ID: 32272467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics.
    Mastrogiacomo M; Scaglione S; Martinetti R; Dolcini L; Beltrame F; Cancedda R; Quarto R
    Biomaterials; 2006 Jun; 27(17):3230-7. PubMed ID: 16488007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials.
    Weiss P; Obadia L; Magne D; Bourges X; Rau C; Weitkamp T; Khairoun I; Bouler JM; Chappard D; Gauthier O; Daculsi G
    Biomaterials; 2003 Nov; 24(25):4591-601. PubMed ID: 12951002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroporous calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former.
    Wang C; Kasuga T; Nogami M
    J Mater Sci Mater Med; 2005 Aug; 16(8):739-44. PubMed ID: 15965744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.
    Konermann A; Staubwasser M; Dirk C; Keilig L; Bourauel C; Götz W; Jäger A; Reichert C
    Int J Oral Maxillofac Surg; 2014 Apr; 43(4):514-21. PubMed ID: 24268900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial.
    Gauthier O; Khairoun I; Bosco J; Obadia L; Bourges X; Rau C; Magne D; Bouler JM; Aguado E; Daculsi G; Weiss P
    J Biomed Mater Res A; 2003 Jul; 66(1):47-54. PubMed ID: 12833430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of calcium phosphate glass on bone formation in calvarial defects of Sprague-Dawley rats.
    Moon HJ; Kim KN; Kim KM; Choi SH; Kim CK; Kim KD; LeGeros RZ; Lee YK
    J Mater Sci Mater Med; 2006 Sep; 17(9):807-13. PubMed ID: 16932862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering.
    Raynaud S; Champion E; Bernache-Assollant D
    Biomaterials; 2002 Feb; 23(4):1073-80. PubMed ID: 11791910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response.
    Bouler JM; Pilet P; Gauthier O; Verron E
    Acta Biomater; 2017 Apr; 53():1-12. PubMed ID: 28159720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of osteoclast-like cells on HA and TCP ceramics.
    Detsch R; Mayr H; Ziegler G
    Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.