These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10357171)

  • 1. Sodium channel fragments: contributions to voltage sensitivity and ion selectivity.
    Duclohier H; Helluin O; Cosette P; Bendahhou S
    Biosci Rep; 1998 Dec; 18(6):279-86. PubMed ID: 10357171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage sensitivity and conformational change of isolated S4L45 fragments from sodium channels are tuned to proline.
    Helluin O; Bendahhou S; Duclohier H
    Eur Biophys J; 1998; 27(6):595-604. PubMed ID: 9791942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication of segment S45 in the permeation pathway of voltage-dependent sodium channels.
    Brullemans M; Helluin O; Dugast JY; Molle G; Duclohier H
    Eur Biophys J; 1994; 23(1):39-49. PubMed ID: 8206005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarity-dependent conformational switching of a peptide mimicking the S4-S5 linker of the voltage-sensitive sodium channel.
    Helluin O; Breed J; Duclohier H
    Biochim Biophys Acta; 1996 Feb; 1279(1):1-4. PubMed ID: 8624353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating synthetic P-regions from voltage-gated sodium channel at the conformational and functional levels.
    Cosette P; Brachais L; Bernardi E; Duclohier H
    Eur Biophys J; 1997; 25(4):275-84. PubMed ID: 9112756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles.
    Miyamoto K; Nakagawa T; Kuroda Y
    J Pept Res; 2001 Sep; 58(3):193-203. PubMed ID: 11576325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of synthetic peptides dissected from the voltage-gated sodium channel.
    Doak DG; Mulvey D; Kawaguchi K; Villalain J; Campbell ID
    J Mol Biol; 1996 May; 258(4):672-87. PubMed ID: 8637001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation.
    Chanda B; Bezanilla F
    J Gen Physiol; 2002 Nov; 120(5):629-45. PubMed ID: 12407076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of a voltage-gated sodium channel.
    Payandeh J; Scheuer T; Zheng N; Catterall WA
    Nature; 2011 Jul; 475(7356):353-8. PubMed ID: 21743477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels.
    Grove A; Tomich JM; Iwamoto T; Montal M
    Protein Sci; 1993 Nov; 2(11):1918-30. PubMed ID: 7505682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.
    Mattila K; Kinder R; Bechinger B
    Biophys J; 1999 Oct; 77(4):2102-13. PubMed ID: 10512830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation.
    Cronin NB; O'Reilly A; Duclohier H; Wallace BA
    J Biol Chem; 2003 Mar; 278(12):10675-82. PubMed ID: 12431988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving.
    Sun YM; Favre I; Schild L; Moczydlowski E
    J Gen Physiol; 1997 Dec; 110(6):693-715. PubMed ID: 9382897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains.
    Kontis KJ; Rounaghi A; Goldin AL
    J Gen Physiol; 1997 Oct; 110(4):391-401. PubMed ID: 9379171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel.
    Favre I; Moczydlowski E; Schild L
    Biophys J; 1996 Dec; 71(6):3110-25. PubMed ID: 8968582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
    Catterall WA
    Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles.
    Miyamoto K; Nakagawa T; Kuroda Y
    Biopolymers; 2001 Oct; 59(5):380-93. PubMed ID: 11514941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role for Pro-13 in directing high-affinity binding of anthopleurin B to the voltage-sensitive sodium channel.
    Kelso GJ; Drum CL; Hanck DA; Blumenthal KM
    Biochemistry; 1996 Nov; 35(45):14157-64. PubMed ID: 8916901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel.
    Shinozaki K; Anzai K; Kirino Y; Lee S; Aoyagi H
    Biochem Biophys Res Commun; 1994 Jan; 198(2):445-50. PubMed ID: 8297354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.