BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10357171)

  • 1. Sodium channel fragments: contributions to voltage sensitivity and ion selectivity.
    Duclohier H; Helluin O; Cosette P; Bendahhou S
    Biosci Rep; 1998 Dec; 18(6):279-86. PubMed ID: 10357171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage sensitivity and conformational change of isolated S4L45 fragments from sodium channels are tuned to proline.
    Helluin O; Bendahhou S; Duclohier H
    Eur Biophys J; 1998; 27(6):595-604. PubMed ID: 9791942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication of segment S45 in the permeation pathway of voltage-dependent sodium channels.
    Brullemans M; Helluin O; Dugast JY; Molle G; Duclohier H
    Eur Biophys J; 1994; 23(1):39-49. PubMed ID: 8206005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarity-dependent conformational switching of a peptide mimicking the S4-S5 linker of the voltage-sensitive sodium channel.
    Helluin O; Breed J; Duclohier H
    Biochim Biophys Acta; 1996 Feb; 1279(1):1-4. PubMed ID: 8624353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating synthetic P-regions from voltage-gated sodium channel at the conformational and functional levels.
    Cosette P; Brachais L; Bernardi E; Duclohier H
    Eur Biophys J; 1997; 25(4):275-84. PubMed ID: 9112756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles.
    Miyamoto K; Nakagawa T; Kuroda Y
    J Pept Res; 2001 Sep; 58(3):193-203. PubMed ID: 11576325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of synthetic peptides dissected from the voltage-gated sodium channel.
    Doak DG; Mulvey D; Kawaguchi K; Villalain J; Campbell ID
    J Mol Biol; 1996 May; 258(4):672-87. PubMed ID: 8637001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation.
    Chanda B; Bezanilla F
    J Gen Physiol; 2002 Nov; 120(5):629-45. PubMed ID: 12407076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of a voltage-gated sodium channel.
    Payandeh J; Scheuer T; Zheng N; Catterall WA
    Nature; 2011 Jul; 475(7356):353-8. PubMed ID: 21743477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels.
    Grove A; Tomich JM; Iwamoto T; Montal M
    Protein Sci; 1993 Nov; 2(11):1918-30. PubMed ID: 7505682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.
    Mattila K; Kinder R; Bechinger B
    Biophys J; 1999 Oct; 77(4):2102-13. PubMed ID: 10512830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation.
    Cronin NB; O'Reilly A; Duclohier H; Wallace BA
    J Biol Chem; 2003 Mar; 278(12):10675-82. PubMed ID: 12431988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving.
    Sun YM; Favre I; Schild L; Moczydlowski E
    J Gen Physiol; 1997 Dec; 110(6):693-715. PubMed ID: 9382897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains.
    Kontis KJ; Rounaghi A; Goldin AL
    J Gen Physiol; 1997 Oct; 110(4):391-401. PubMed ID: 9379171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel.
    Favre I; Moczydlowski E; Schild L
    Biophys J; 1996 Dec; 71(6):3110-25. PubMed ID: 8968582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
    Catterall WA
    Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles.
    Miyamoto K; Nakagawa T; Kuroda Y
    Biopolymers; 2001 Oct; 59(5):380-93. PubMed ID: 11514941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role for Pro-13 in directing high-affinity binding of anthopleurin B to the voltage-sensitive sodium channel.
    Kelso GJ; Drum CL; Hanck DA; Blumenthal KM
    Biochemistry; 1996 Nov; 35(45):14157-64. PubMed ID: 8916901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel.
    Shinozaki K; Anzai K; Kirino Y; Lee S; Aoyagi H
    Biochem Biophys Res Commun; 1994 Jan; 198(2):445-50. PubMed ID: 8297354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.