BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10357235)

  • 1. Short-range linkage relationships, genomic organisation and sequence comparisons of a cluster of five HSP70 genes in Fugu rubripes.
    Lim EH; Brenner S
    Cell Mol Life Sci; 1999 Apr; 55(4):668-78. PubMed ID: 10357235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-range linkage relationships of the valyl-tRNA synthetase gene in Fugu rubripes.
    Lim EH; Brenner S
    Immunogenetics; 1997; 46(4):332-6. PubMed ID: 9218536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and sequencing of complement component C9 and its linkage to DOC-2 in the pufferfish Fugu rubripes.
    Yeo GS; Elgar G; Sandford R; Brenner S
    Gene; 1997 Oct; 200(1-2):203-11. PubMed ID: 9373156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the three major histocompatibility complex-linked heat shock protein 70 (Hsp70) genes of the rat.
    Walter L; Rauh F; Günther E
    Immunogenetics; 1994; 40(5):325-30. PubMed ID: 7927536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-type lectin-like domains in Fugu rubripes.
    Zelensky AN; Gready JE
    BMC Genomics; 2004 Aug; 5(1):51. PubMed ID: 15285787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and characterization of the Fugu rubripes MEST/COPG2 imprinting cluster and chromosomal localization in Fugu and Tetraodon nigroviridis.
    Brunner B; Grützner F; Yaspo ML; Ropers HH; Haaf T; Kalscheuer VM
    Chromosome Res; 2000; 8(6):465-76. PubMed ID: 11032317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1.
    Brunner B; Hornung U; Shan Z; Nanda I; Kondo M; Zend-Ajusch E; Haaf T; Ropers HH; Shima A; Schmid M; Kalscheuer VM; Schartl M
    Genomics; 2001 Sep; 77(1-2):8-17. PubMed ID: 11543627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic sequence analysis of Fugu rubripes CFTR and flanking genes in a 60 kb region conserving synteny with 800 kb of human chromosome 7.
    Davidson H; Taylor MS; Doherty A; Boyd AC; Porteous DJ
    Genome Res; 2000 Aug; 10(8):1194-203. PubMed ID: 10958637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of a gene cluster in Fugu rubripes containing the complement component C4 gene.
    Sambrook JG; Campbell RD; Elgar G
    Gene; 2003 Jul; 312():73-83. PubMed ID: 12909342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic structure and nucleotide sequence of the p55 gene of the puffer fish Fugu rubripes.
    Elgar G; Rattray F; Greystrong J; Brenner S
    Genomics; 1995 Jun; 27(3):442-6. PubMed ID: 7558025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and genomic organization of the hsp70 genes of Leishmania amazonensis.
    Bock JH; Langer PJ
    Mol Biochem Parasitol; 1993 Dec; 62(2):187-97. PubMed ID: 8139614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and expression of the three MHC-linked HSP70 genes.
    Milner CM; Campbell RD
    Immunogenetics; 1990; 32(4):242-51. PubMed ID: 1700760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13.
    Miles C; Elgar G; Coles E; Kleinjan DJ; van Heyningen V; Hastie N
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):13068-72. PubMed ID: 9789042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Round-spotted pufferfish (Tetraodon fluviatilis) snf5 gene is oriented in a tail-to-tail manner with the set gene which encodes an inhibitor of protein phosphatase 2A.
    Yao CW; Leu JH; Chin C; Chou CK; Huang CJ
    DNA Cell Biol; 1998 Jan; 17(1):69-82. PubMed ID: 9468224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The two genes encoding yeast ribosomal protein S8 reside on different chromosomes, and are closely linked to the hsp70 stress protein genes SSA3 and SSA4.
    Logghe M; Molemans F; Fiers W; Contreras R
    Yeast; 1994 Aug; 10(8):1093-1100. PubMed ID: 7992509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of six new loci within the swine major histocompatibility complex class III region.
    Nunes M; Peelman L; Vaiman M; Bourgeaux N; Chardon P
    Mamm Genome; 1994 Oct; 5(10):616-22. PubMed ID: 7849397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis).
    Sodhi M; Mukesh M; Kishore A; Mishra BP; Kataria RS; Joshi BK
    Gene; 2013 Sep; 527(2):606-15. PubMed ID: 23792016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heat shock 70 gene family in the Mediterranean fruit fly Ceratitis capitata.
    Papadimitriou E; Kritikou D; Mavroidis M; Zacharopoulou A; Mintzas AC
    Insect Mol Biol; 1998 Aug; 7(3):279-90. PubMed ID: 9662478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the PCOLCE region in Fugu rubripes using a new automated annotation tool.
    Riboldi Tunnicliffe G; Gloeckner G; Elgar GS; Brenner S; Rosenthal A
    Mamm Genome; 2000 Mar; 11(3):213-9. PubMed ID: 10723726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp70 duplication in the Drosophila melanogaster species group: how and when did two become five?
    Bettencourt BR; Feder ME
    Mol Biol Evol; 2001 Jul; 18(7):1272-82. PubMed ID: 11420366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.