These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10357460)

  • 21. Spatial EEG correlates of nonassociative and associative olfactory learning in rabbits.
    Grajski KA; Freeman WJ
    Behav Neurosci; 1989 Aug; 103(4):790-804. PubMed ID: 2765184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonassociative learning processes determine expression and extinction of conditioned fear in mice.
    Kamprath K; Wotjak CT
    Learn Mem; 2004; 11(6):770-86. PubMed ID: 15537742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavioral Forgetting of Olfactory Learning Is Mediated by Interneuron-Regulated Network Plasticity in
    Teo JH; Kurokawa I; Onishi Y; Sato N; Kitazono T; Tokunaga T; Fujiwara M; Ishihara T
    eNeuro; 2022; 9(4):. PubMed ID: 35977825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extinction of associative learning in Hermissenda: behavior and neural correlates.
    Richards WG; Farley J; Alkon DL
    Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans.
    Tsui D; van der Kooy D
    Learn Mem; 2008 Nov; 15(11):844-55. PubMed ID: 18984566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans.
    Amano H; Maruyama IN
    Learn Mem; 2011 Oct; 18(10):654-65. PubMed ID: 21960709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans.
    Nuttley WM; Harbinder S; van der Kooy D
    Learn Mem; 2001; 8(3):170-81. PubMed ID: 11390637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral Tests for Associative Learning in Caenorhabditis elegans.
    Rahmani A; McMillen A; Allen E; Minervini C; Chew YL
    Methods Mol Biol; 2024; 2746():21-46. PubMed ID: 38070077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Diacylglycerol Content in Olfactory Neurons Determines Forgetting or Retrieval of Olfactory Memory in
    Arai M; Kurokawa I; Arakane H; Kitazono T; Ishihara T
    J Neurosci; 2022 Oct; 42(43):8039-8053. PubMed ID: 36104280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural correlates of conditioned odor avoidance in infant rats.
    Sullivan RM; Wilson DA
    Behav Neurosci; 1991 Apr; 105(2):307-12. PubMed ID: 2043275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drosophila mutants lacking octopamine exhibit impairment in aversive olfactory associative learning.
    Iliadi KG; Iliadi N; Boulianne GL
    Eur J Neurosci; 2017 Sep; 46(5):2080-2087. PubMed ID: 28715094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans.
    Mori I
    Annu Rev Genet; 1999; 33():399-422. PubMed ID: 10690413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans.
    Yamazoe-Umemoto A; Fujita K; Iino Y; Iwasaki Y; Kimura KD
    Neurosci Res; 2015 Oct; 99():22-33. PubMed ID: 26068898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serotonin mediates food-odor associative learning in the nematode Caenorhabditiselegans.
    Nuttley WM; Atkinson-Leadbeater KP; Van Der Kooy D
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12449-54. PubMed ID: 12202746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans.
    Sengupta P; Colbert HA; Kimmel BE; Dwyer N; Bargmann CI
    Ciba Found Symp; 1993; 179():235-44; discussion 244-50. PubMed ID: 8168378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone.
    Torayama I; Ishihara T; Katsura I
    J Neurosci; 2007 Jan; 27(4):741-50. PubMed ID: 17251413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of neuropeptides in learning: Insights from C. elegans.
    De Fruyt N; Yu AJ; Rankin CH; Beets I; Chew YL
    Int J Biochem Cell Biol; 2020 Aug; 125():105801. PubMed ID: 32652305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cold shock before associative conditioning blocks memory retrieval, but cold shock after conditioning blocks memory retention in Caenorhabditis elegans.
    Morrison GE; van der Kooy D
    Behav Neurosci; 1997 Jun; 111(3):564-78. PubMed ID: 9189271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans.
    Kurino C; Furuhashi T; Sudoh K; Sakamoto K
    Biochem Biophys Res Commun; 2017 Apr; 485(2):395-399. PubMed ID: 28209513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.