These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10357460)

  • 41. What can a worm learn in a bacteria-rich habitat?
    Liu H; Zhang Y
    J Neurogenet; 2020; 34(3-4):369-377. PubMed ID: 33054485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. State-dependency in C. elegans.
    Bettinger JC; McIntire SL
    Genes Brain Behav; 2004 Oct; 3(5):266-72. PubMed ID: 15344920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons.
    Wes PD; Bargmann CI
    Nature; 2001 Apr; 410(6829):698-701. PubMed ID: 11287957
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations.
    Taniguchi G; Uozumi T; Kiriyama K; Kamizaki T; Hirotsu T
    Sci Signal; 2014 Apr; 7(323):ra39. PubMed ID: 24782565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice.
    Gruart A; Muñoz MD; Delgado-García JM
    J Neurosci; 2006 Jan; 26(4):1077-87. PubMed ID: 16436593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Associative learning of plant odorants activating the same or different receptor neurones in the moth Heliothis virescens.
    Skiri HT; Stranden M; Sandoz JC; Menzel R; Mustaparta H
    J Exp Biol; 2005 Feb; 208(Pt 4):787-96. PubMed ID: 15695769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway.
    Hirotsu T; Iino Y
    Genes Cells; 2005 Jun; 10(6):517-30. PubMed ID: 15938711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Taste-potentiated odor aversion learning: role of the amygdaloid basolateral complex and central nucleus.
    Hatfield T; Graham PW; Gallagher M
    Behav Neurosci; 1992 Apr; 106(2):286-93. PubMed ID: 1317183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classical conditioning, differential conditioning, and second-order conditioning of the Aplysia gill-withdrawal reflex in a simplified mantle organ preparation.
    Hawkins RD; Greene W; Kandel ER
    Behav Neurosci; 1998 Jun; 112(3):636-45. PubMed ID: 9676979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Associative foundation of causal learning in rats.
    Polack CW; McConnell BL; Miller RR
    Learn Behav; 2013 Mar; 41(1):25-41. PubMed ID: 22562460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans.
    Saeki S; Yamamoto M; Iino Y
    J Exp Biol; 2001 May; 204(Pt 10):1757-64. PubMed ID: 11316496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Associative encoding in posterior piriform cortex during odor discrimination and reversal learning.
    Calu DJ; Roesch MR; Stalnaker TA; Schoenbaum G
    Cereb Cortex; 2007 Jun; 17(6):1342-9. PubMed ID: 16882682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex.
    Vergoz V; Roussel E; Sandoz JC; Giurfa M
    PLoS One; 2007 Mar; 2(3):e288. PubMed ID: 17372627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An instance theory of associative learning.
    Jamieson RK; Crump MJ; Hannah SD
    Learn Behav; 2012 Mar; 40(1):61-82. PubMed ID: 21913057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-Wide Temporal Expression Profiling in
    Freytag V; Probst S; Hadziselimovic N; Boglari C; Hauser Y; Peter F; Gabor Fenyves B; Milnik A; Demougin P; Vukojevic V; de Quervain DJ; Papassotiropoulos A; Stetak A
    J Neurosci; 2017 Jul; 37(28):6661-6672. PubMed ID: 28592692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Circuit for Gradient Climbing in C. elegans Chemotaxis.
    Larsch J; Flavell SW; Liu Q; Gordus A; Albrecht DR; Bargmann CI
    Cell Rep; 2015 Sep; 12(11):1748-60. PubMed ID: 26365196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans.
    Zhang Y; Lu H; Bargmann CI
    Nature; 2005 Nov; 438(7065):179-84. PubMed ID: 16281027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Appetitive odor-cue conditioning attenuates the acoustic startle response in rats.
    Schneider M; Spanagel R
    Behav Brain Res; 2008 May; 189(1):226-30. PubMed ID: 18243352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx.
    Haenicke J; Yamagata N; Zwaka H; Nawrot M; Menzel R
    eNeuro; 2018; 5(3):. PubMed ID: 29938214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gustatory thalamus lesions in the rat: II. Aversive and appetitive taste conditioning.
    Reilly S; Pritchard TC
    Behav Neurosci; 1996 Aug; 110(4):746-59. PubMed ID: 8864266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.