BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 1035780)

  • 1. Microtubules and actin filaments in teleost visual cone elongation and contraction.
    Burnside B
    J Supramol Struct; 1976; 5(3):257-75. PubMed ID: 1035780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B; Adler R; O'Connor P
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina.
    Burnside B
    J Cell Biol; 1978 Jul; 78(1):227-46. PubMed ID: 566760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin-dependent myoid elongation in teleost rod inner/outer segments occurs in the absence of net actin polymerization.
    Pagh-Roehl K; Brandenburger J; Wang E; Burnside B
    Cell Motil Cytoskeleton; 1992; 21(3):235-51. PubMed ID: 1581976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly.
    O'Connor P; Burnside B
    J Cell Biol; 1981 Jun; 89(3):517-24. PubMed ID: 6894759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubules in cone myoid elongation in the teleost retina.
    Warren RH; Brunside B
    J Cell Biol; 1978 Jul; 78(1):247-59. PubMed ID: 670294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevation of cyclic AMP activates an actin-dependent contraction in teleost retinal rods.
    O'Connor P; Burnside B
    J Cell Biol; 1982 Nov; 95(2 Pt 1):445-52. PubMed ID: 6183273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinomotor movements in isolated teleost retinal cone inner-outer segment preparations (CIS-COS): effects of light, dark and dopamine.
    Burnside B; Wang E; Pagh-Roehl K; Rey H
    Exp Eye Res; 1993 Dec; 57(6):709-22. PubMed ID: 8150023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shortening of the calycal process actin cytoskeleton is correlated with myoid elongation in teleost rods.
    Pagh-Roehl K; Wang E; Burnside B
    Exp Eye Res; 1992 Nov; 55(5):735-46. PubMed ID: 1478283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-ethylmaleimide-modified subfragment-1 and heavy meromyosin inhibit reactivated contraction in motile models of retinal cones.
    Porrello K; Cande WZ; Burnside B
    J Cell Biol; 1983 Feb; 96(2):449-54. PubMed ID: 6833364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivation of contraction in detergent-lysed teleost retinal cones.
    Burnside B; Smith B; Nagata M; Porrello K
    J Cell Biol; 1982 Jan; 92(1):199-206. PubMed ID: 7199051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy.
    Ujihara Y; Miyazaki H; Wada S
    J Physiol Sci; 2008 Dec; 58(7):499-506. PubMed ID: 18928641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubules, intermediate filaments, and actin filaments in the odontoblast of rat incisor.
    Nishikawa S; Kitamura H
    Anat Rec; 1987 Oct; 219(2):144-51. PubMed ID: 3688467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of actin filaments and microtubules in the spreading of rabbit corneal epithelial cells on the fibronectin matrix.
    Fukuda M; Nishida T; Otori T
    Cornea; 1990 Jan; 9(1):28-35. PubMed ID: 2297991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreceptor fine structure in light- and dark-adaptation in the butterfly fish (Pantodon buchholzi).
    Braekevelt CR
    Anat Anz; 1990; 171(5):351-8. PubMed ID: 2088152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length.
    Levinson G; Burnside B
    Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):294-303. PubMed ID: 7203876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochalasin B-induced redistribution of cytokeratin filaments in PtK1 cells.
    Wolf KM; Mullins JM
    Cell Motil Cytoskeleton; 1987; 7(4):347-60. PubMed ID: 2440591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.