BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 10357811)

  • 1. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S; de Gier JW; Nielsen H; von Heijne G
    EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo assessment of the Tat signal peptide specificity in Escherichia coli.
    Ize B; Gérard F; Wu LF
    Arch Microbiol; 2002 Dec; 178(6):548-53. PubMed ID: 12420178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism.
    Wu LF; Ize B; Chanal A; Quentin Y; Fichant G
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):179-89. PubMed ID: 10939242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery.
    Ignatova Z; Hörnle C; Nurk A; Kasche V
    Biochem Biophys Res Commun; 2002 Feb; 291(1):146-9. PubMed ID: 11829474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase.
    Bachmann J; Bauer B; Zwicker K; Ludwig B; Anderka O
    FEBS J; 2006 Nov; 273(21):4817-30. PubMed ID: 16987314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo dissection of the Tat translocation pathway in Escherichia coli.
    Ize B; Gérard F; Zhang M; Chanal A; Voulhoux R; Palmer T; Filloux A; Wu LF
    J Mol Biol; 2002 Mar; 317(3):327-35. PubMed ID: 11922668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation.
    Blaudeck N; Sprenger GA; Freudl R; Wiegert T
    J Bacteriol; 2001 Jan; 183(2):604-10. PubMed ID: 11133954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane.
    Blaudeck N; Kreutzenbeck P; Freudl R; Sprenger GA
    J Bacteriol; 2003 May; 185(9):2811-9. PubMed ID: 12700260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q; Palmer T
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxalate decarboxylase from Agrobacterium tumefaciens C58 is translocated by a twin arginine translocation system.
    Shen YH; Liu RJ; Wang HQ
    J Microbiol Biotechnol; 2008 Jul; 18(7):1245-51. PubMed ID: 18667852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YidC-dependent translocation of green fluorescence protein fused to the FliP cleavable signal peptide.
    Pradel N; Decorps A; Ye C; Santini CL; Wu LF
    Biochimie; 2005 Feb; 87(2):191-6. PubMed ID: 15760712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential translocation of green fluorescent protein fused to signal sequences of Ruminococcus albus cellulases by the Tat and Sec pathways of Escherichia coli.
    Esbelin J; Martin C; Forano E; Mosoni P
    FEMS Microbiol Lett; 2009 May; 294(2):239-44. PubMed ID: 19341390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence imaging of GFP-fused periplasmic components of Na+-driven flagellar motor using Tat pathway in Vibrio alginolyticus.
    Takekawa N; Kojima S; Homma M
    J Biochem; 2013 Jun; 153(6):547-53. PubMed ID: 23457404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tat dependent export of E. coli phytase AppA by using the PhoD-specific transport system of Bacillus subtilis.
    Gerlach R; Pop O; Müller JP
    J Basic Microbiol; 2004; 44(5):351-9. PubMed ID: 15378526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Periplasmic Expression in Escherichia coli for the Production of Recombinant Proteins Tagged with the Small Metal-Binding Protein SmbP.
    Santos BD; Morones-Ramirez JR; Balderas-Renteria I; Casillas-Vega NG; Galbraith DW; Zarate X
    Mol Biotechnol; 2019 Jun; 61(6):451-460. PubMed ID: 30997666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic selection of solubility-enhanced proteins using the twin-arginine translocation system.
    Fisher AC; Rocco MA; DeLisa MP
    Methods Mol Biol; 2011; 705():53-67. PubMed ID: 21125380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of green fluorescent protein by comparative analysis with multiple signal peptides.
    Linton E; Walsh MK; Sims RC; Miller CD
    Biotechnol J; 2012 May; 7(5):667-76. PubMed ID: 21834133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans.
    Li H; Faury D; Morosoli R
    FEMS Microbiol Lett; 2006 Feb; 255(2):268-74. PubMed ID: 16448505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.