BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10358100)

  • 1. DNA tetraplex formation studied with fluorescence resonance energy transfer.
    Simonsson T; Sjöback R
    J Biol Chem; 1999 Jun; 274(24):17379-83. PubMed ID: 10358100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures.
    Simonsson T; Pribylova M; Vorlickova M
    Biochem Biophys Res Commun; 2000 Nov; 278(1):158-66. PubMed ID: 11071868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of i-tetraplex formation in the nuclease hypersensitive element of human c-myc promoter.
    Mathur V; Verma A; Maiti S; Chowdhury S
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1220-7. PubMed ID: 15249220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetraplex formation of surface-immobilized human telomere sequence probed by surface plasmon resonance using single-stranded DNA binding protein.
    Zeng ZX; Zhao Y; Hao YH; Tan Z
    J Mol Recognit; 2005; 18(3):267-71. PubMed ID: 15593287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III(1) of the human c-myc proto-oncogene.
    Beckett J; Burns J; Broxson C; Tornaletti S
    Biochemistry; 2012 Jul; 51(26):5257-68. PubMed ID: 22667821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetraplex DNA transitions within the human c-myc promoter detected by multivariate curve resolution of fluorescence resonance energy transfer.
    Kumar P; Verma A; Maiti S; Gargallo R; Chowdhury S
    Biochemistry; 2005 Dec; 44(50):16426-34. PubMed ID: 16342935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation.
    Weitzmann MN; Woodford KJ; Usdin K
    J Biol Chem; 1996 Aug; 271(34):20958-64. PubMed ID: 8702855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA tetraplex formation in the control region of c-myc.
    Simonsson T; Pecinka P; Kubista M
    Nucleic Acids Res; 1998 Mar; 26(5):1167-72. PubMed ID: 9469822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase.
    Alberti P; Schmitt P; Nguyen CH; Rivalle C; Hoarau M; Grierson DS; Mergny JL
    Bioorg Med Chem Lett; 2002 Apr; 12(7):1071-4. PubMed ID: 11909720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization.
    Ambrus A; Chen D; Dai J; Jones RA; Yang D
    Biochemistry; 2005 Feb; 44(6):2048-58. PubMed ID: 15697230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats.
    Vorlícková M; Chládková J; Kejnovská I; Fialová M; Kypr J
    Nucleic Acids Res; 2005; 33(18):5851-60. PubMed ID: 16221978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the biologically relevant G-quadruplex in the c-MYC promoter.
    Yang D; Hurley LH
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(8):951-68. PubMed ID: 16901825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence Methods for Probing G-Quadruplex Structure in Single- and Double-Stranded DNA.
    Stevens AJ; Kennedy HL; Kennedy MA
    Biochemistry; 2016 Jul; 55(26):3714-25. PubMed ID: 27253207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triphenylmethane dyes as fluorescent probes for G-quadruplex recognition.
    Guo JH; Zhu LN; Kong DM; Shen HX
    Talanta; 2009 Dec; 80(2):607-13. PubMed ID: 19836527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter.
    Phan AT; Modi YS; Patel DJ
    J Am Chem Soc; 2004 Jul; 126(28):8710-6. PubMed ID: 15250723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-stranded DNA structures can be stabilized by two different types of minor groove G:C:G:C tetrads.
    Escaja N; Gómez-Pinto I; Pedroso E; Gonzalez C
    J Am Chem Soc; 2007 Feb; 129(7):2004-14. PubMed ID: 17260988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quadruplex formation by a guanine-rich PNA oligomer.
    Datta B; Bier ME; Roy S; Armitage BA
    J Am Chem Soc; 2005 Mar; 127(12):4199-207. PubMed ID: 15783201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and K+ ion-dependent stability of a parallel-stranded DNA quadruplex containing a core A-tetrad.
    Searle MS; Williams HE; Gallagher CT; Grant RJ; Stevens MF
    Org Biomol Chem; 2004 Mar; 2(6):810-2. PubMed ID: 15007406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.